http://www.icourses.cn 南开大学《抽象代数》
§1.5 循环群 {\color{blue}\text{\S 1.5 循环群}} §1.5 循环群
定
义
1.5.1
由
一
个
元
素
a
反
复
运
算
生
成
的
群
{\color{blue}定义1.5.1\quad}由一个元素a反复运算生成的群
定义1.5.1由一个元素a反复运算生成的群
G
=
{
a
n
∣
n
∈
Z
}
\qquad G = \lbrace a^n | n \in \Z \rbrace
G={an∣n∈Z}
称
为
循
环
群
,
记
为
⟨
a
⟩
,
a
称
为
这
个
循
环
群
的
生
成
元
.
称为{\color{blue}循环群},记为\lang a \rang,a称为这个循环群的{\color{blue}生成元}.
称为循环群,记为⟨a⟩,a称为这个循环群的生成元.
循环群的任一元都可表为生成元的方幂。
命
题
1.5.1
循
环
群
都
是
交
换
群
.
{\color{blue}命题1.5.1\quad}{\color{green}循环群都是交换群.}
命题1.5.1循环群都是交换群.
例
1
n
次
单
位
根
的
全
体
U
n
=
{
z
∈
C
∣
z
n
=
1
}
对
于
复
数
的
乘
法
运
算
构
成
一
个
循
环
群
,
{\color{blue}例1\quad}n次单位根的全体U_n = \lbrace z \in \Complex | z^n = 1 \rbrace 对于复数的乘法运算构成一个循环群,
例1n次单位根的全体Un={z∈C∣zn=1}对于复数的乘法运算构成一个循环群,
n
次
本
原
单
位
根
是
这
个
循
环
群
的
生
成
元
.
n次本原单位根是这个循环群的生成元.
n次本原单位根是这个循环群的生成元.
特
别
地
,
U
2
=
{
1
,
−
1
}
,
−
1
是
生
成
元
;
U
3
=
{
1
,
ω
,
ω
2
}
,
ω
=
−
1
+
−
3
2
是
生
成
元
;
U
4
=
{
1
,
−
1
,
−
1
,
−
−
1
}
,
−
−
1
是
生
成
元
。
特别地,U_2=\lbrace 1, -1 \rbrace, -1是生成元;U_3 = \lbrace 1, \omega, \omega^{2} \rbrace, \omega = \dfrac{-1 + \sqrt{-3}}{2}是生成元;U_4 = \lbrace 1, \sqrt{-1}, -1, -\sqrt{-1} \rbrace, -\sqrt{-1}是生成元。
特别地,U2={1,−1},−1是生成元;U3={1,ω,ω2},ω=2−1+−3是生成元;U4={1,−1,−1,−−1},−−1是生成元。
定
理
1.5.2
循
环
群
的
任
一
子
群
也
是
循
环
群
.
{\color{blue}定理1.5.2\quad}{\color{green}循环群的任一子群也是循环群.}
定理1.5.2循环群的任一子群也是循环群.
证
:
是
G
1
是
G
=
⟨
a
⟩
的
一
个
子
群
,
下
边
设
法
找
出
G
1
的
生
成
元
.
{\color{blue}证:}是G_1是G = \lang a \rang 的一个子群,下边设法找出G_1的生成元.
证:是G1是G=⟨a⟩的一个子群,下边设法找出G1的生成元.
取
k
=
min
{
m
∈
N
∣
a
m
∈
G
1
}
.
去
证
G
1
=
⟨
a
k
⟩
.
取k=\min \lbrace m \in \N | a^m \in G_1 \rbrace.去证G_1 = \lang a^k \rang.
取k=min{m∈N∣am∈G1}.去证G1=⟨ak⟩.
由
a
k
∈
G
1
及
G
1
对
运
算
封
闭
知
⟨
a
k
⟩
⊆
G
1
.
由a^k \in G_1及G_1对运算封闭知\lang a^k \rang \subseteq G_1.
由ak∈G1及G1对运算封闭知⟨ak⟩⊆G1.
反
之
,
∀
a
m
∈
G
1
,
要
证
a
m
∈
⟨
a
k
⟩
,
即
存
在
q
,
反之,\forall a^m \in G_1,要证a^m \in \lang a^k \rang,即存在q,
反之,∀am∈G1,要证am∈⟨ak⟩,即存在q,
使
a
m
=
a
q
k
,
也
即
m
=
k
q
,
也
即
k
∣
m
.
左
带
余
除
法
使a^m = a^{qk},也即m = kq,也即k|m.左带余除法
使am=aqk,也即m=kq,也即k∣m.左带余除法
m
=
q
k
+
r
,
0
≤
r
<
k
.
\qquad m = qk + r, 0 \leq r \lt k.
m=qk+r,0≤r<k.
则
a
r
=
a
m
−
q
k
=
a
m
⋅
(
a
k
)
−
q
∈
G
1
.
若
r
=
̸
0
,
便
与
k
的
取
法
矛
盾
,
所
以
r
=
0
,
即
m
=
k
q
.
这
证
明
了
G
1
⊆
⟨
a
k
⟩
.
则a^r = a^{m-qk} = a^m \cdot (a^k)^{-q} \in G_1.若r =\not 0, 便与k的取法矛盾,所以r = 0,即m = kq.这证明了G_1 \subseteq \lang a^k \rang.
则ar=am−qk=am⋅(ak)−q∈G1.若r≠0,便与k的取法矛盾,所以r=0,即m=kq.这证明了G1⊆⟨ak⟩.
推
论
1.5.3
整
数
加
群
Z
的
子
群
如
m
Z
,
m
∈
N
∪
{
0
}
.
{\color{blue}推论1.5.3\quad}{\color{green}整数加群\Z的子群如m\Z,m \in \N \cup \lbrace 0 \rbrace.}
推论1.5.3整数加群Z的子群如mZ,m∈N∪{0}.
证
:
注
意
到
这
里
的
运
算
是
加
法
.
{
Z
;
+
}
的
生
成
元
是
1.
{\color{blue}证:}注意到这里的运算是加法.\lbrace \Z;+ \rbrace的生成元是1.
证:注意到这里的运算是加法.{Z;+}的生成元是1.
{
Z
;
+
}
=
{
n
⋅
1
∣
n
∈
Z
}
.
\qquad \lbrace \Z; + \rbrace = \lbrace n \cdot 1 | n \in \Z \rbrace.
{Z;+}={n⋅1∣n∈Z}.
设
G
1
是
{
Z
;
+
}
的
子
群
.
根
据
定
理
1.5.1
的
证
明
过
程
知
,
如
果
G
1
=
̸
{
0
}
,
则
有
k
∈
N
,
使
G
1
=
⟨
k
⋅
1
⟩
=
{
n
⋅
k
∣
n
∈
Z
}
=
k
Z
.
设G_1是\lbrace \Z;+ \rbrace的子群.根据定理1.5.1的证明过程知,如果G_1 =\not \lbrace 0 \rbrace, 则有k \in \N,使G_1 = \lang k \cdot 1 \rang = \lbrace n \cdot k | n \in \Z \rbrace = k \Z.
设G1是{Z;+}的子群.根据定理1.5.1的证明过程知,如果G1≠{0},则有k∈N,使G1=⟨k⋅1⟩={n⋅k∣n∈Z}=kZ.
G
1
=
{
0
}
可
以
写
成
G
1
=
0
Z
,
而
G
=
k
Z
通
常
写
成
m
Z
.
G_1 = \lbrace 0 \rbrace 可以写成G_1 = 0 \Z,而G=k\Z通常写成m\Z.
G1={0}可以写成G1=0Z,而G=kZ通常写成mZ.
把循环群作为代数体系来研究,重要问题是,在同构意义下,循环群有多少种?每一种的结构如何?下边的定理回答了这一问题,该定理的结论和证明方法都比较典型。
定
理
1.5.4
设
群
G
=
⟨
a
⟩
.
若
G
是
无
限
阶
的
,
则
G
与
{
Z
;
+
}
同
构
;
若
G
是
有
限
阶
m
阶
的
,
{\color{blue}定理1.5.4\quad}{\color{green}设群G=\lang a \rang.若G是无限阶的,则G与\lbrace \Z; + \rbrace同构;若G是有限阶m阶的,}
定理1.5.4设群G=⟨a⟩.若G是无限阶的,则G与{Z;+}同构;若G是有限阶m阶的,
则
G
与
{
Z
m
;
+
}
同
构
.
所
以
,
两
个
循
环
群
同
构
  
⟺
  
它
们
有
相
同
的
阶
.
{\color{green}则G与\lbrace \Z_m; + \rbrace同构.所以,两个循环群同构 \iff 它们有相同的阶.}
则G与{Zm;+}同构.所以,两个循环群同构⟺它们有相同的阶.
证
:
我
们
借
助
于
群
的
同
态
基
本
定
理
去
完
成
证
明
.
{\color{blue}证:}我们借助于群的同态基本定理去完成证明.
证:我们借助于群的同态基本定理去完成证明.
令
令
令
ϕ
:
{
Z
;
+
}
→
G
\qquad \phi: \lbrace \Z; + \rbrace \to G
ϕ:{Z;+}→G
n
↦
a
n
\qquad \qquad n \mapsto a^n
n↦an
∀
n
1
,
n
2
∈
{
Z
;
+
}
,
有
\forall n_1,n_2 \in \lbrace \Z;+ \rbrace,有
∀n1,n2∈{Z;+},有
ϕ
(
n
1
+
n
2
)
=
a
n
1
+
n
2
=
a
n
1
⋅
a
n
2
=
ϕ
(
n
1
)
⋅
ϕ
(
n
2
)
.
\quad \phi(n_1+n_2) = a^{n_1+n_2} = a^{n_1} \cdot a^{n_2} = \phi(n_1) \cdot \phi(n_2).
ϕ(n1+n2)=an1+n2=an1⋅an2=ϕ(n1)⋅ϕ(n2).
又
因
G
中
任
一
元
都
可
表
为
a
n
,
所
以
ϕ
是
一
个
满
同
态
映
射
.
又因G中任一元都可表为a^n,所以\phi是一个满同态映射.
又因G中任一元都可表为an,所以ϕ是一个满同态映射.
据
同
态
基
本
定
理
有
据同态基本定理有
据同态基本定理有
{
Z
;
+
}
/
ker
ϕ
≃
G
.
\qquad \lbrace \Z;+ \rbrace / \ker \phi \simeq G.
{Z;+}/kerϕ≃G.
再
据
推
论
1.5.3
知
,
ker
ϕ
必
形
如
m
Z
,
m
∈
N
∪
{
0
}
.
再据推论1.5.3知,\ker \phi 必形如m\Z,m \in \N \cup \lbrace 0 \rbrace.
再据推论1.5.3知,kerϕ必形如mZ,m∈N∪{0}.
若
m
=
0
,
则
ker
ϕ
=
{
0
}
,
于
是
G
≃
{
Z
;
+
}
,
此
时
G
的
阶
为
无
限
.
若m = 0,则\ker \phi = \lbrace 0 \rbrace, 于是G \simeq \lbrace \Z;+ \rbrace,此时G的阶为无限.
若m=0,则kerϕ={0},于是G≃{Z;+},此时G的阶为无限.
若
m
=
̸
0
,
则
ker
ϕ
=
m
Z
,
m
∈
N
,
于
是
G
≃
{
Z
;
+
}
/
m
Z
=
{
Z
m
;
+
}
,
此
时
G
的
阶
为
有
限
,
即
m
.
若m=\not0,则\ker \phi = m\Z,m \in \N, 于是G \simeq \lbrace \Z; + \rbrace/m\Z = \lbrace \Z_m;+\rbrace,此时G的阶为有限,即m.
若m≠0,则kerϕ=mZ,m∈N,于是G≃{Z;+}/mZ={Zm;+},此时G的阶为有限,即m.
这样,就证明了循环群可分为两大类:无限阶的与有限阶的。而无限阶循环群都与
{
Z
;
+
}
\lbrace \Z;+\rbrace
{Z;+}同构,有限阶循环群又依其阶m分别与
{
Z
m
;
+
}
\lbrace \Z_m;+\rbrace
{Zm;+}同构。
{
Z
;
+
}
\lbrace \Z;+ \rbrace
{Z;+}及
{
Z
m
;
+
}
\lbrace \Z_m;+\rbrace
{Zm;+}的结构我们是清楚的,从而所有循环群的结构我们都搞清楚了。
定理还表明,
∀
m
∈
N
,
m
\forall m \in \N, m
∀m∈N,m阶循环群都是存在的,并且在同构意义下只有一个m阶循环群。这样,我们对于循环群的存在问题、分类问题、数量问题都已给出回答。这是抽象代数研究方式的一个缩影。抽象代数研究一种代数体系,就是要解决这种体系的存在问题、分类问题、数量问题。
下面讨论循环群的子群的特点。Lagrange定理(定理1.3.6)说明,对于有限群G,子群的阶一定是原来群的阶|G|的因子。对于|G|的任一因子
m
1
m_1
m1,是否一定存在G的子群
G
1
G_1
G1,使
∣
G
1
∣
=
m
1
|G_1| = m_1
∣G1∣=m1?答案是否定的。
但是对于循环群,相应的命题是正确的。
定
理
1.5.5
设
G
是
m
阶
循
环
群
,
m
1
是
m
的
一
个
正
整
数
因
子
,
则
存
在
G
的
唯
一
的
m
1
阶
子
群
.
{\color{blue}定理1.5.5\quad}{\color{green}设G是m阶循环群,m_1是m的一个正整数因子,则存在G的唯一的m_1阶子群.}
定理1.5.5设G是m阶循环群,m1是m的一个正整数因子,则存在G的唯一的m1阶子群.
证
:
因
m
阶
循
环
群
在
同
构
下
只
有
一
种
结
构
,
即
{
Z
m
,
+
}
,
故
不
妨
设
{\color{blue}证:}因m阶循环群在同构下只有一种结构,即\lbrace \Z_m,+\rbrace,故不妨设
证:因m阶循环群在同构下只有一种结构,即{Zm,+},故不妨设
G
=
{
Z
m
;
+
}
=
{
0
ˉ
,
1
ˉ
,
⋯
 
,
(
m
−
1
)
‾
}
=
⟨
1
ˉ
⟩
.
\quad G=\lbrace \Z_m;+\rbrace = \lbrace \bar 0, \bar 1, \cdots, \overline{(m-1)}\rbrace = \lang \bar 1 \rang.
G={Zm;+}={0ˉ,1ˉ,⋯,(m−1)}=⟨1ˉ⟩.
因
m
1
∣
m
,
故
m
m
1
是
正
整
数
,
且
0
<
m
m
1
≤
m
.
容
易
验
证
,
因m_1 | m,故\dfrac{m}{m_1}是正整数,且0 \lt \dfrac{m}{m_1} \leq m.容易验证,
因m1∣m,故m1m是正整数,且0<m1m≤m.容易验证,
⟨
(
m
m
1
)
⟩
‾
=
{
0
ˉ
,
(
m
m
1
)
‾
,
(
2
m
m
1
)
‾
,
⋯
 
,
(
m
1
−
1
)
m
m
1
‾
}
\overline{\lang (\dfrac{m}{m_1}) \rang } = \lbrace \bar 0, \overline{(\dfrac{m}{m_1})}, \overline{(2\dfrac{m}{m_1})}, \cdots, \overline{(m_1-1)\dfrac{m}{m_1}} \rbrace
⟨(m1m)⟩={0ˉ,(m1m),(2m1m),⋯,(m1−1)m1m}
是
G
的
m
1
阶
子
群
。
是G的m_1阶子群。
是G的m1阶子群。
定
理
1.5.6
设
G
是
m
阶
群
,
则
G
是
循
环
群
的
充
要
条
件
是
,
对
m
的
每
个
正
整
数
因
子
m
1
,
{\color{blue}定理1.5.6\quad}{\color{green}设G是m阶群,则G是循环群的充要条件是,对m的每个正整数因子m_1,}
定理1.5.6设G是m阶群,则G是循环群的充要条件是,对m的每个正整数因子m1,
都
存
在
G
的
唯
一
的
m
1
阶
子
群
.
{\color{green}都存在G的唯一的m_1阶子群.}
都存在G的唯一的m1阶子群.
这一定理的证明是1956年才给出的,有一定难度。
从
{
Z
m
;
+
}
的
结
构
中
可
看
出
,
m
阶
循
环
群
的
生
成
元
的
阶
也
是
m
(
注
意
到
这
两
个
从\lbrace \Z_m;+\rbrace的结构中可看出,m阶循环群的生成元的阶也是m(注意到这两个
从{Zm;+}的结构中可看出,m阶循环群的生成元的阶也是m(注意到这两个
“
阶
”
字
含
义
不
同
)
.
即
如
果
G
=
⟨
a
⟩
是
m
阶
的
,
当
运
算
记
为
乘
法
时
,
必
“阶”字含义不同).即如果G=\lang a \rang是m阶的,当运算记为乘法时,必
“阶”字含义不同).即如果G=⟨a⟩是m阶的,当运算记为乘法时,必
a
m
=
e
,
a
k
=
̸
e
,
0
<
k
<
m
,
\qquad a^m = e, a^k =\not e, 0 < k < m,
am=e,ak≠e,0<k<m,
⟨
a
⟩
=
{
a
0
,
a
1
,
⋯
 
,
a
m
−
1
}
.
\qquad \lang a \rang = \lbrace a^0,a^1, \cdots, a^{m-1} \rbrace.
⟨a⟩={a0,a1,⋯,am−1}.
当
运
算
记
为
加
法
时
,
必
当运算记为加法时,必
当运算记为加法时,必
m
a
=
0
,
k
a
=
̸
0
,
0
<
k
<
m
,
\qquad ma = 0,ka =\not 0, 0 < k < m,
ma=0,ka≠0,0<k<m,
⟨
a
⟩
=
{
0
⋅
a
,
1
⋅
a
,
⋯
 
,
(
m
−
1
)
⋅
a
}
.
\qquad \lang a \rang = \lbrace 0 \cdot a, 1 \cdot a, \cdots, (m-1) \cdot a \rbrace.
⟨a⟩={0⋅a,1⋅a,⋯,(m−1)⋅a}.
命
题
1.5.7
有
限
群
G
的
任
一
元
素
a
的
阶
是
有
限
的
,
且
是
G
的
阶
的
因
子
.
{\color{blue}命题1.5.7\quad}{\color{green}有限群G的任一元素a的阶是有限的,且是G的阶的因子.}
命题1.5.7有限群G的任一元素a的阶是有限的,且是G的阶的因子.
证
:
设
a
的
阶
为
d
,
群
运
算
不
妨
记
为
乘
法
,
则
有
{\color{blue}证:}设a的阶为d,群运算不妨记为乘法,则有
证:设a的阶为d,群运算不妨记为乘法,则有
⟨
a
⟩
=
{
e
,
a
1
,
⋯
 
,
a
d
−
1
}
.
\qquad \lang a \rang = \lbrace e, a^{1}, \cdots, a^{d-1} \rbrace.
⟨a⟩={e,a1,⋯,ad−1}.
所
以
G
的
子
群
⟨
a
⟩
的
阶
也
为
d
.
据
定
理
1.3.6
立
得
结
论
.
所以G的子群\lang a \rang 的阶也为d.据定理1.3.6立得结论.
所以G的子群⟨a⟩的阶也为d.据定理1.3.6立得结论.
循
环
群
G
=
⟨
a
⟩
,
可
看
作
G
中
一
个
元
素
a
生
成
的
子
群
,
其
中
元
素
形
为
{
a
n
∣
n
∈
Z
}
.
由
于
a
n
中
的
n
可
以
是
正
整
数
、
负
整
数
和
零
,
所
以
G
中
的
元
素
也
可
以
看
作
{
a
,
a
−
1
}
循环群G = \lang a \rang,可看作G中一个元素a生成的子群,其中元素形为\lbrace a^n | n \in \Z \rbrace.由于a^n中的n可以是正整数、负整数和零,所以G中的元素也可以看作\lbrace a, a^{-1} \rbrace
循环群G=⟨a⟩,可看作G中一个元素a生成的子群,其中元素形为{an∣n∈Z}.由于an中的n可以是正整数、负整数和零,所以G中的元素也可以看作{a,a−1}
中
任
一
有
限
多
个
元
素
的
乘
积
,
即
x
1
x
2
⋯
x
m
,
其
中
x
1
,
⋯
 
,
x
m
∈
{
a
,
a
−
1
}
.
中任一有限多个元素的乘积,即x_1x_2 \cdots x_m,其中x_1,\cdots,x_m \in \lbrace a, a^{-1} \rbrace.
中任一有限多个元素的乘积,即x1x2⋯xm,其中x1,⋯,xm∈{a,a−1}.
定
义
1.5.2
设
S
是
群
G
中
一
个
非
空
子
集
,
记
S
−
1
=
{
a
−
1
∣
a
∈
S
}
,
则
{\color{blue}定义1.5.2\quad}设S是群G中一个非空子集,记S^{-1}=\lbrace a^{-1}|a \in S \rbrace,则
定义1.5.2设S是群G中一个非空子集,记S−1={a−1∣a∈S},则
{
x
1
⋯
x
m
∣
x
1
,
⋯
 
,
x
m
∈
S
∪
S
−
1
}
.
\qquad \lbrace x_1 \cdots x_m | x_1, \cdots, x_m \in S \cup S^{-1} \rbrace.
{x1⋯xm∣x1,⋯,xm∈S∪S−1}.
是
G
的
一
个
子
群
,
称
为
S
生
成
的
子
群
,
记
为
⟨
S
⟩
.
是G的一个子群,称为{\color{blue}S生成的子群},记为\lang S \rang.
是G的一个子群,称为S生成的子群,记为⟨S⟩.
其
中
“
⟨
S
⟩
是
G
的
子
群
”
一
点
,
用
定
理
1.3.1
容
易
验
证
。
其中“\lang S \rang是G的子群”一点,用定理1.3.1容易验证。
其中“⟨S⟩是G的子群”一点,用定理1.3.1容易验证。
若
⟨
a
⟩
⊆
G
,
则
⟨
a
⟩
可
看
作
G
中
所
有
包
含
{
a
}
的
子
群
的
交
,
它
是
G
中
包
含
{
a
}
的
最
小
的
子
群
.
若\lang a \rang \subseteq G,则\lang a \rang可看作G中所有包含\lbrace a \rbrace的子群的交,它是G中包含\lbrace a \rbrace的最小的子群.
若⟨a⟩⊆G,则⟨a⟩可看作G中所有包含{a}的子群的交,它是G中包含{a}的最小的子群.
类
似
地
,
若
S
是
G
中
非
空
子
集
,
则
⟨
S
⟩
可
看
作
G
中
所
有
包
含
S
的
子
群
的
交
,
它
是
G
中
类似地,若S是G中非空子集,则\lang S \rang可看作G中所有包含S的子群的交,它是G中
类似地,若S是G中非空子集,则⟨S⟩可看作G中所有包含S的子群的交,它是G中
包
含
S
的
最
小
的
子
群
.
包含S的最小的子群.
包含S的最小的子群.
如
果
⟨
S
⟩
=
G
,
则
称
S
为
群
G
的
一
个
生
成
组
.
如
果
群
G
有
一
个
有
限
子
集
S
作
为
G
的
生
成
组
,
则
称
如果\lang S \rang = G,则称S为群G的一个{\color{blue}生成组}.如果群G有一个有限子集S作为G的生成组,则称
如果⟨S⟩=G,则称S为群G的一个生成组.如果群G有一个有限子集S作为G的生成组,则称
G
为
有
限
生
成
群
.
有
限
群
自
身
就
可
以
看
作
一
个
生
成
组
,
所
以
,
有
限
群
一
定
是
有
限
生
G为{\color{blue}有限生成群}.有限群自身就可以看作一个生成组,所以,有限群一定是有限生
G为有限生成群.有限群自身就可以看作一个生成组,所以,有限群一定是有限生
成
群
,
但
有
限
生
成
群
不
一
定
是
有
限
群
,
例
如
{
Z
;
+
}
=
⟨
a
⟩
就
是
无
限
生
成
群
.
成群,但有限生成群不一定是有限群,例如\lbrace \Z;+\rbrace = \lang a \rang 就是无限生成群.
成群,但有限生成群不一定是有限群,例如{Z;+}=⟨a⟩就是无限生成群.