抽象代数 04.04 有限单群

§4.4 有限单群 {\color{blue}\text{\S 4.4 有限单群}} §4.4 有限单群

定 理 4.4.1. 设 G 为 有 限 A b e l 群 , 且 G = ̸ { 1 } . 则 G 为 单 群 当 且 仅 当 G 为 素 数 阶 ( 循 环 ) 群 。 {\color{blue}定理4.4.1.}设G为有限Abel群,且G =\not \lbrace 1 \rbrace.则G为单群当且仅当G为素数阶(循环)群。 4.4.1.GAbel,G≠{1}.GG()
注 记 4.4.2. 无 需 G 的 阶 有 限 。 {\color{blue}注记4.4.2.}无需G的阶有限。 4.4.2.G
例 4.4.3. 阶 数 小 于 60 的 群 都 不 是 非 A b e l 有 限 单 群 。 例4.4.3.阶数小于60的群都不是非Abel有限单群。 4.4.3.60Abel
例 4.4.4. 1 ) S n 的 共 轭 类 与 n 的 划 分 、 幂 零 矩 阵 的 共 轭 类 、 Y o u n g 图 的 一 一 对 应 。 例4.4.4.\quad 1)S_n的共轭类与n的划分、幂零矩阵的共轭类、Young图的一一对应。 4.4.4.1)SnnYoung
2 ) S n 的 正 规 子 群 2)S_n的正规子群 2)Sn
n = 1 , 2 , \quad n = 1, 2, n=1,2,
n = 3 , A 3 , \quad n = 3, A_3, n=3,A3,
n = 4 , K 4 , A 4 . \quad n = 4, K_4, A_4. n=4,K4,A4.
n ≥ 5 , A 5 . \quad n \geq 5, A_5. n5,A5.
注 记 4.4.5. 要 证 明 一 个 群 G 是 单 群 , 常 规 的 步 骤 如 下 : {\color{blue}注记4.4.5.}要证明一个群G是单群,常规的步骤如下: 4.4.5.G:
1 ) 寻 找 G 的 生 成 元 组 A . 1)寻找G的生成元组A. 1)GA.
2 ) 证 明 A 中 任 何 两 个 元 素 在 G 中 共 轭 . 2)证明A中任何两个元素在G中共轭. 2)AG.
3 ) 证 明 G 任 何 非 平 凡 正 规 子 群 N 都 包 含 A 中 一 个 元 素 . 3)证明G任何非平凡正规子群N都包含A中一个元素. 3)GNA.
定 理 4.4.6. 当 n ≥ 5 时 , A 5 为 非 A b e l 有 限 单 群 。 {\color{blue}定理4.4.6.}当n \geq 5时,A_5为非Abel有限单群。 4.4.6.n5,A5Abel
证 1 ) 当 n ≥ 3 时 , A n 由 所 有 3 − 轮 换 生 成 。 ( 实 际 上 可 以 取 A = { ( 12 k ) , k = 3 , 4 , ⋯   , n } . ) ( i j ) ( i j ) = ( 1 ) , ( i j ) ( i k ) = ( j i k ) , ( i j ) ( k l ) = ( i j k ) ( j k l ) . {\color{blue}证\quad}1)当n\geq 3时,A_n由所有3-轮换生成。(实际上可以取A=\lbrace(12k),k=3,4,\cdots,n\rbrace.)(ij)(ij)=(1),(ij)(ik)=(jik),(ij)(kl)=(ijk)(jkl). 1)n3,An3(A={(12k),k=3,4,,n}.)(ij)(ij)=(1),(ij)(ik)=(jik),(ij)(kl)=(ijk)(jkl).
2 ) 当 n ≥ 5 时 , A n 中 所 有 3 − 轮 换 是 一 个 共 轭 类 。 2)当n\ge 5时,A_n中所有3-轮换是一个共轭类。 2)n5,An3
3 ) 要 证 明 A n 是 单 群 , 需 要 证 明 A n 没 有 非 平 凡 正 规 子 群 , 只 需 证 明 若 H ⊲ A n , H = ̸ { 1 } , 则 H 含 有 一 个 3 − 轮 换 。 将 A 中 σ 分 解 成 不 相 交 的 轮 换 的 乘 积 。 3)要证明A_n是单群,需要证明A_n没有非平凡正规子群,只需证明若H \lhd A_n,H =\not \lbrace 1 \rbrace,则H含有一个3-轮换。将A中\sigma分解成不相交的轮换的乘积。 3)An,An,HAn,H≠{1},H3Aσ
i ) σ 的 分 解 中 含 有 r − 轮 换 , r ≥ 4 , 不 妨 设 σ = ( 12 ⋯ r ) τ ( 为 什 么 可 以 这 么 设 ? ) , τ ∈ S r + 1 , ⋯   , n . ( 123 ) σ ( 123 ) − 1 σ = ( 123 ) ( σ ( 1 ) σ ( 3 ) σ ( 2 ) ) = ( 123 ) ( 324 ) = ( 124 ) . i)\sigma的分解中含有r-轮换,r\ge 4,不妨设\sigma = (12\cdots r)\tau (为什么可以这么设?),\tau \in S_{r+1,\cdots,n}. (123)\sigma(123)^{-1}\sigma=(123)(\sigma(1)\sigma(3)\sigma(2))=(123)(324)=(124). i)σr,r4,σ=(12r)τ(?),τSr+1,,n.(123)σ(123)1σ=(123)(σ(1)σ(3)σ(2))=(123)(324)=(124).
i i ) σ = ( 123 ) ( 456 ) τ , ( 124 ) σ ( 124 ) − 1 ( σ ) − 1 = ( 124 ) ( 253 ) = ( 12534 ) , 再 利 用 1 ) 。 ii)\sigma=(123)(456)\tau,(124)\sigma(124)^{-1}(\sigma)^{-1}=(124)(253)=(12534),再利用1)。 ii)σ=(123)(456)τ,(124)σ(124)1(σ)1=(124)(253)=(12534),1)
i i i ) σ = ( 123 ) τ , τ 2 = ( 1 ) , 则 σ 2 = ( 132 ) . iii)\sigma=(123)\tau,\tau^{2}=(1),则\sigma^{2}=(132). iii)σ=(123)τ,τ2=(1),σ2=(132).
i v ) σ 是 不 相 交 对 换 的 乘 积 , 不 妨 设 为 σ = ( 12 ) ( 34 ) ⋯ = ( 12 ) ( 34 ) τ , ( 123 ) σ ( 132 ) σ − 1 = ( 123 ) ( 241 ) = ( 13 ) ( 24 ) . ( 135 ) ( 13 ) ( 24 ) ( 153 ) ( 13 ) ( 24 ) = ( 135 ) ( 351 ) = ( 153 ) . iv)\sigma是不相交对换的乘积,不妨设为\sigma=(12)(34)\cdots = (12)(34)\tau,(123)\sigma(132)\sigma^{-1}=(123)(241)=(13)(24).(135)(13)(24)(153)(13)(24)=(135)(351)=(153). iv)σσ=(12)(34)=(12)(34)τ,(123)σ(132)σ1=(123)(241)=(13)(24).(135)(13)(24)(153)(13)(24)=(135)(351)=(153).

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值