【浪】LangSmith是否可替代?Langfuse VS Langsmith

       

可观测性范围图

         随着生成式 AI 概念的火爆,以 ChatGPT 为代表,市场上涌现了一系列商用或者开源的大模型,同时基于大语言模型以及 AI 生态技术栈构建的应用以及业务场景也越来越多,大规模的模型训练以及模型推理场景也催生了 MLOps、LLMOps 等相关的岗位需求。

       如何监控并保障大模型应用上线的性能以及用户体验?如何支持复杂拓扑场景下 LLM 应用领域的链路可视化分析以及根因定位?

      需要从成本以及效果等方面获得线上实际效果表现,辅助分析、评估以及优化迭代大语言模型等。基于上述需求以及问题背景,面向 LLM 应用技术栈的可观测能力解决方案也成为了日益重要的话题。

      

为什么需要 LLM 应用可观测

TruEra 的研究数据揭示,尽管 2023 年被视为构建大规模语言模型(LLM)应用原型的繁荣时期,但实际转化成生产环境部署的比例依旧偏低。历史数据分析指出,仅约 10% 的企业能将超过 25% 的 LLM 开发项目推进至生产阶段,而逾 75% 的企业则尚未实现任何 LLM 应用的商业化落地。这一现状凸显了从理论原型到实践应用之间存在的显著差距。例如前面介绍的不同的应用范式都面临实际的问题需要解决。究其原因,大模型应用从研发到生产依然面临着一系列挑战。

大模型依赖存在不确定性

LLM 作为一种复杂的统计模型,其行为偶尔呈现出不可预知性,尤其在以下几个核心问题上表现突出:

  • 模型效果不佳: 模型在处理复杂逻辑推理任务时能力欠佳,且由于知识库的局限性,面对新颖问题时回答质量不高。此外,随时间推移,模型漂移可能导致回答质量逐渐下滑。
  • 性能与可靠性挑战: LLM 设计为无状态,完成一次回答需耗时超过十秒,复杂推理则更久。在高并发场景下,大型模型的请求容易引发限流,同时部分请求还可能偶发失败,影响服务稳定性。
  • 可解释性和透明度不足: 模型的可解释性需要提供详尽的模型版本、参数配置及部署详情,以便用户更好地理解和验证模型输出的答案。
  • 资源管理问题: 监控计算资源的负载与效率至关重要,因 LLM 系统在高峰期可能遭遇响应迟缓,并受限于 Token 计数的硬性约束,影响服务的连续性和效率。

LLM App 架构链路复杂

一个复杂的 LLM App 应用架构可能包含前端 UI 组件、认证模块、会话管理、对话服务、LLM 路由以及静态或者动态的流程编排。需要对接不同的 LLM 服务,需要借助 Moderation 和 Guarddrails 进行内容审查以及提示词防御。可能会调用外部工具或者服务来完成具体的操作,查询向量数据库来优化对话上下文或者长期记忆,通过对接缓存服务能够直接命中缓存降低对 LLM 的重复调用进而降低成本。可能会面临如下挑战:

  • 不同应用的语言技术栈多样,技术框架多样,不同的大模型调用,如何低成本高质量的采集数据发现并定位线上问题?
  • 如何监控大模型应用上线后,端到端全链路的性能以及业务质量,在性能下降或者报错时及时触发告警,第一时间保障用户体验?
  • 如何标准化的记录输入输出,跟踪 Token 消耗、关键执行动作、结果状态,最终通过可视化的方式进行呈现并灵活分析?
  • 应用编排框架屏蔽底层细节,Agent 逻辑复杂、使用的工具质量参差不齐,如何具备一定的白盒化能力进行根因定位?
  • 如何记录线上实际效果表现数据,辅助分析、评估以及持续优化迭代 LLM 应用?

综上,LLM 应用存在复杂的应用链路拓扑、组件依赖以及大模型领域洞察,需要通过可观测能力来保障系统 SLA 以及终端用户使用体验。

        LLM大模型应用可观测性工具最负盛名的就是Langsmith,这个工具跟Langchain兼容性很好,不过这个工具有一个缺点就是他是个云平台,不能本地部署,对国内的小伙伴来说就不太友好。

      

Langsmith是自信构建和部署 LLM 应用。用于调试、测试、评估和监控的统一平台。

     

Is Langfuse a Langsmith Alternative?

The answer is yes, Langfuse is an open-source alternative to Langsmith.

Langsmith可替代吗? 答案是肯定的,Langfuse是一个开源的框架,可平替Langsmith。

Lang Smith和Langfuse是大致相似的产品。它们提供LLM可观察性、分析、评估、测试和注释。

Langfuse和Langsmith的主要区别是什么

Langfuse是一个开源项目,而Lang Smith是一个闭源项目。

Lang Smith由Lang Chain团队开发,与Lang Chain框架集成得很好。虽然Langfuse也维护着Langchain集成,但如果你打算专门使用Langchain和Langgraph框架进行开发,你最好选择Langsmith。

Langfuse维护了大量与许多框架和库的集成。Langsmith专注于其Langchain集成。

Langfuse可以免费自托管,而Lang Smith需要购买才能自托管。

Langfuse和Langsmith和Langchain有关系吗?

不,Langfuse独立于Langsmith和Langchain。Langsmith是由开发开源Langchain LLM应用程序框架的同一家公司提供的商业产品。

虽然Langfuse与开源Langchain框架集成,但这两个组织是独立的,没有关系。Langfuse和Langsmith在同一个领域运作,都试图帮助开发人员改进和迭代他们的LLM应用程序。

你能自主控制Langsmith吗?

Langsmith可以自托管,但需要付费的企业许可证。它是一个闭源项目。

Langfuse可以自由自托管,并且是开源的。用户可以在自由和开源软件(FOSS)版本中自行托管Langfuse,同时还可以使用具有一些附加功能的付费企业版。

Langfuse与Langsmith的比较

独立咨询公司Astral Insights撰写了一份比较Langsmith和Langfuse的报告。你可以在这里找到它

Comparison of Observability Platforms: LangSmith & Langfuse - Astral Insights

Reddit上有一个帖子,用户在其中讨论Langsmith的替代品。

https://www.reddit.com/r/LangChain/comments/1b2y18p/langsmith_started_charging_time_to_compare/

另一个Reddit帖子讨论了Langsmith的免费替代品

https://www.reddit.com/r/LocalLLaMA/comments/1aujfiz/real_free_alternative_to_langsmith/

大家知道Langfuse什么含义了吧

感兴趣的同学可以自行去查看文档,至于是使用Langsmith 还是langfuse,自己根据项目应用情况,和两者的优劣势进行抉择,相信小伙伴都能找到最合适自己的LLM应用可观测工具。

Langfuse官网:  Langfuse

### LangSmith 和 LangChain 的特性对比 #### 特性比较 LangSmith 是一个专注于自然语言处理模型评估和优化的平台,而 LangChain 则是一个用于构建复杂对话系统的框架。 - **模块化设计** - LangSmith 提供了一套完整的工具链来帮助开发者训练、测试以及部署机器学习模型。这些功能被精心打包成易于使用的API接口[^1]。 - LangChain 更加注重于通过链接多个独立组件创建灵活多变的应用程序逻辑流。它允许用户定义一系列的任务节点,并指定它们之间如何交互传递数据[^2]。 - 对于希望快速迭代并改进其AI产品的团队来说,LangSmith 支持无缝对接各种主流云服务提供商的产品和服务,从而简化了基础设施管理的工作量。 - 而 LangChain 可以轻松接入不同的NLP库和技术栈,使得开发人员能够自由组合最适合项目需求的技术方案。 #### 使用场景分析 - **适用领域** - 当企业需要对其内部使用的聊天机器人或其他基于文本交流的人工智能应用进行全面的质量把控时,LangSmith 将会是非常理想的选择。该平台不仅提供了详尽的数据可视化报表,还具备强大的错误检测机制,有助于及时发现潜在问题所在。 - 如果目标是打造高度定制化的客户服务体验或是实现特定业务流程自动化,则应该考虑采用LangChain 。凭借其出色的灵活性,可以针对不同行业的特殊要求调整架构,进而满足更为复杂的实际应用场景下的挑战。 ```python # 示例代码展示两者可能的操作方式差异 # 假设这是使用LangSmith进行模型性能监控的一个简单例子 from langsmith import ModelMonitor monitor = ModelMonitor(model_id="example_model") results = monitor.evaluate(test_data) print(results.summary()) # 下面这段代码展示了利用LangChain搭建一个多阶段问答系统的过程 from langchain import ChainBuilder, QAStage builder = ChainBuilder() qa_stage = QAStage(question="What is the capital of France?") pipeline = builder.add(qa_stage).build() response = pipeline.run(input_text="Tell me about Paris.") print(response.output) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值