归纳学习(Inductive Learning): 顾名思义,就是从已有训练数据中归纳出模式来,应用于新的测试数据和任务。我们常用的机器学习模式就是归纳学习。
直推学习(Transductive Learning): 也叫转导学习,指的是由当前学习的知识直接推广到指定的部分数据上。即用于训练的数据包含了测试数据,学习过程是作用在这个固定的数据上的,一旦数据发生改变,需要重新进行学习训练。
Inductive Learning 对应于meta-learning(元学习),要求从诸多给定的任务和数据中学习通用的模式,迁移到未知的任务和数据上。
Transductive Learning 对应于domain adaptation(领域自适应),给定训练的数据包含了目标域数据,要求训练一个对目标域数据有最小误差的模型。
困难负样本(Hard Negative): hard negative就是当你得到错误的预测样本时,会创建一个负样本,并把这个负样本添加到训练集中去。当重新训练你的分类器后,分类器会表现的更好,并且不会像之前那样产生多的错误的正样本。
归纳学习(Inductive Learning),直推学习(Transductive Learning),困难负采样(Hard Negative)
于 2022-10-05 22:40:55 首次发布