估算圆周率 π 的蒙特卡洛方法实验报告
实现计算π的Monte Carlo算法。假设我们要求误差以大于等于99%的概率小于0.0001。在不使用π真实值的前提下,如何设计算法的停止条件?
1. 算法基本思路
使用蒙特卡洛方法来估算圆周率 π \pi π。该方法通过在单位正方形内随机生成点,然后计算落入单位圆内的点的比例来估算 π \pi π。通过增加采样点的数量,可以提高估计的准确性。并使用 Chebyshev 不等式来估计误差,能够在一定置信水平下估算 π \pi π的值,并在达到指定的目标误差时停止迭代。
2. 算法正确性证明
基于大数定律,即随着样本数量的增加,估计值会越来越接近真实值。在本算法中,通过统计落入单位圆内的点的比例来估算 π \pi π,因此当采样数量足够大时,估算值会趋近于 π \pi π。
3. 算法时间复杂度
大致为 O ( n ) O(n) O(n)
4. 代码设计基本框架:
#include <bits/stdc++.h>
using namespace std;
double estimate_pi(int num_samples) {
srand(time(0));
int num_inside_circle = 0;
for (int i = 0; i < num_samples; ++i) {
double x = (double)rand() / RAND_MAX;
double y = (double)rand() / RAND_MAX;
if (x * x + y * y <= 1) {
num_inside_circle++;
}
}
return 4.0 * num_inside_circle / num_samples;
}
int main() {
const double target_error = 0.0001; // 目标误差
const double confidence = 0.99; // 置信度
double estimated_pi = 0.0;
double error = target_error + 1.0; // 初始化误差
int count=0;//迭代次数
int num_samples = 100; // 初始样本数量
while (error > target_error) {
count+=1;
estimated_pi = estimate_pi(num_samples);
// 使用Chebyshev不等式估计误差
double variance = 1.0; // 在[0,1]范围内均匀分布
double z_score = sqrt(-2.0*log(1.0 - confidence));
error = z_score * sqrt(variance / num_samples);
num_samples *= 3; //
cout << "Estimated Pi: " << estimated_pi <<'\n'<< endl;
cout << "Error: " << error <<'\n'<< endl;
cout<< "Counts: "<< count <<'\n'<<endl;
}
return 0;
}
- 使用
estimate_pi
函数来估算 π \pi π,该函数根据给定的样本数量生成随机点,并计算落入单位圆内的点的比例,返回估计的 π \pi π值。 - 在
main
函数中,通过设置目标误差和置信度,然后使用 Chebyshev 不等式来估计误差。随着样本数量的增加,计算估计的 π \pi π 值并计算误差,直到误差达到目标值为止 - 在每次迭代中,输出估计的 π \pi π 值和当前的误差,以便观察算法的收敛情况。