重温高中数学知识。。。。。
方差:
使用方差来描述数据的离散程度–数据里中心越远越离散
总体方差
样本方差
> a = c(1,2,3,4,5)
> a
[1] 1 2 3 4 5
-- 方差
> var(a)
[1] 2.5
-- 平均数
> mean(a)
[1] 3
-- 中位数
> median(a)
[1] 3
-- 排序
> sort(a)
[1] 1 2 3 4 5
分位数
四分位数
样本空间
对于随机试验E,E的所有可能结果组成的集合称为E的样本空间,记为S
事件
一般的,我们称试验E的样本空间S的某个子集为E的随机事件,简称事件。
基本事件,掷骰子共有6个基本事件
必然事件, 小于等于6点必然事件
不可能事件,大于6点不可能事件
事件关系:
包含,和事件,积事件,差事件,互斥事件,逆事件
交互率,结合律,分配率
德摩根律
频率
相同条件下,重复n次试验,事件A发生的次数na成为 A发生的频数
na/n 称为事件A的频率
概率
大量的实验表明,当重复次数n逐渐增大时,事件A发生的频率会逐渐稳定于某个常数p,p就称为A发生的概率即为P(A)
概率需要满足的条件:
非负性,P(A)≥0
规范性,对于必然事件S,P(S)=1
可列可加性
概率的性质
古典概型
对于试验E,若满足:
1.试验的样本空间只包含有限个元素
2.试验中每个基本事件发生的可能性相同,即每个基本事件发生的概率相等
这样的实验称为古典概型,抛硬币,掷骰子
排列组合
排列问题:与顺序有关
组合问题:与顺序无关
1-9取3个数的不同排列,9*8*7
1-9取3个数的不同组合,9*8*7/(3*2*1)
几何概型
对于试验E,若满足
1.试验的样本空间包含无限个元素
2.试验中每个实验发生的可能性相同
这样的试验称为几何概型
投针试验