浅谈Dead reckoning实现原理以及常用算法

本文介绍了航位推算在自动驾驶中的关键作用,从简单到复杂的几种方法,包括陀螺仪与轮速的组合,以及ESKF在不同场景下的应用。同时,讨论了如何在移动机器人(如AGV)和行人定位中优化IPDR系统以减少误差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0. 简介

航位推算是一个很常见的定位方法。在知道当前时刻的位置,然后通过imu等传感器去估计下一个时刻的位置。在自动驾驶车辆定位的时候,GPS提供10Hz的定位信息。这每个GPS信息来临的0.1s的间隔里面,车辆位置也会移动很多。那么这个时候就需要航位推算来判断车辆到底移动了多少距离,在哪个地方。所以,航位推算是自动驾驶车辆最基本的,也是必须的一种算法之一。比如推算车辆在隧道中的位置。


1. 从简至繁的几种航迹推算方法

1.1 陀螺仪yaw角 + 轮速

实现方式:松耦合,yaw角确定2D方向,轮速确定长度,即可递推航迹

待标定量:陀螺仪Z方向零偏,单位轮齿脉冲长度

优点:实现最简单

缺点:仅适用于2D平面DR,浪费了IMU的大部分数据


1.2 陀螺仪rpy角 + 轮速

实现方式:松耦合,rpy确定3D方向,轮速确定长度,递推姿态,参考[1]的实现

待标定量:陀螺仪X、Y、Z方向零偏,单位轮齿脉冲长度

优点:实现简单,在三维空间中进行DR

缺点:浪费了加计的数据


1.3 ESKF(陀螺仪rpy预测,加计观测) + 轮速

实现方式:松耦合,采用ESKF得到更好的姿态(rpy作为预测,加计作为观测【零加速度模型,只感受重力】),轮速确定长度,递推姿态,参考[2]的实现

待标定量:陀螺仪X、Y、Z方向零偏、加速度计X、Y、Z方向零偏,单位轮齿脉冲长度

优点:在三维空间中进行DR,在车辆静止或者平缓运动时,可以得到更好的旋转

缺点:实现稍微复杂,当车辆做加、减速运动时,不满足零加速度模型,观测模型失效


1.4 ESKF (陀螺仪rpy+加计预测,轮速观测)

实现方式:紧耦合,采用IMU运动学模型预测轨迹,轮速作为对于车辆X方向上速度的观测,对预测的轨迹进行修正,参考[3]的实现

待标定量:陀螺仪X、Y、Z方向零偏及零偏随机游走、加速度计X、Y、Z方向零偏及零偏随机游走、单位轮齿脉冲长度

优点:融合了所有IMU和轮速的所有信息,在标定准确的情况下,可以得到最接近真值的轨迹

缺点:实现最复杂,待标定量最多,调参最困难

2. 基于航位推算的机器们

移动机器人如果能够在无控制环境下进行导航而无需导航设备,就可以被称为自主的。另外,移动机器人也可以依赖导航设备,在相对受控的空间内按照预定的导航路线行驶。在这种情况下,它们被称为自主导航车辆(AGV)。对于自动驾驶汽车也可以做出同样的区分。为了开发真正“自主”的车辆,定位是导航的一个重要要素,特别是对于规划和控制而言。为此,我们认为强大的航位推算(DR)能力是必不可少的。实际上,虽然存在使用外部感知传感器的定位方法[5],[6],[14],但它们通常只能提供低频和间歇性的定位。



而针对行人,IPDR系统的主要关注点是如何抑制和减少惯性传感器引起的漂移和偏差误差。充分考虑和利用人体运动特征和活动环境的外部约束,并深化传感器输出信号的深层信息是误差控制的关键。身体是人类运动的创造者。因此,首先应考虑和分析身体自身的约束。在人体运动过程中,身体不同部位的运动特征是不同的。例如,在下肢运动中,脚底周期性接触地面,速度被认为是零,腿部可以被视为两个周期性倒立摆模型。更精确的人体运动信息将为误差修正提供更可靠的先验知识。例如,在脚部安装的IPDR系统中,通过测量每步的支撑相期间获得零速率和零角速度观测,然后进行零速度更新(ZUPT)和零角速度更新(ZARU),以在短时间内限制误差。

…详情请参照古月居

Dead reckoning,中文意为"死人推算法",是一种通过航向、速度、时间等信息估算当前位置的方法。在无法进行实时定位的情况下,如GPS信号丢失或遭遇干扰,通过dead reckoning仍然能够提供较为准确的位置估算。其中,matlab作为一种广泛应用于科学计算和工程设计的软件工具,也可以用于实现dead reckoning。 在matlab中实现dead reckoning,首先需要确定车辆的起始位置和朝向,并记录当前时间。然后,通过车辆的速度和朝向,结合时间的变化,计算出车辆在每个时间间隔内行驶的距离和方向。这些信息可以根据车辆的航向和速度矢量进行计算,并使用勾股定理等基本数学方法来计算出行驶距离和方向。 因为dead reckoning的精度受限于计算的准确性,所以需要不断校准位置和方向信息。为此,需要在车辆行驶过程中不断采集传感器数据,例如陀螺仪、加速度计和罗盘数据,以纠正预测的位置和朝向。使用这些校准数据后,可以重新计算车辆的位置和航向,并不断更新dead reckoning的估算结果。 综上所述,matlab实现dead reckoning需要确定起始位置和朝向,以及记录时间和采集传感器数据。在此基础上,使用基本数学方法和传感器数据计算车辆行驶距离和方向,并不断校准和更新预测结果。这样可以在一定程度上提高dead reckoning的准确性和实用性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

敢敢のwings

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值