1.数字三角形【由下到上】
#include <bits/stdc++.h>
using namespace std;
const int N=505;
int n;
int f[N][N],a[N][N];
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
for(int j=1;j<=i;j++)
scanf("%d",&a[i][j]);
for(int i=1;i<=n;i++)
f[n][i]=a[n][i];
for(int i=n-1;i;i--)
for(int j=1;j<=i;j++)
f[i][j]=max(f[i+1][j],f[i+1][j+1])+a[i][j];
cout<<f[1][1]<<endl;
return 0;
}
2067.走方格【果然DP还要多多练习,干瞪眼做不出】
#include <bits/stdc++.h>
using namespace std;
const int N=40;
int n,m;
int f[N][N];
int main()
{
cin>>n>>m;
f[1][1]=1;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
if(i==1&&j==1) continue;
if(i%2||j%2)
f[i][j]=f[i-1][j]+f[i][j-1];
}
cout<<f[n][m]<<endl;
return 0;
}
2.最长上升子序列
#include <bits/stdc++.h>
using namespace std;
const int N=1010;
int n;
int f[N],a[N];
int main()
{
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
for(int i=1;i<=n;i++)
{
f[i]=1;
for(int j=1;j<n;j++)
if(a[i]>a[j]) f[i]=max(f[i],f[j]+1);
}
int res=1;
for(int j=1;j<=n;j++) res=max(res,f[j]);
cout<<res<<endl;
return 0;
}
3.最长上升子序列2【妙啊】(把玄学问题变成科学问题,虽然我还是想不到)
q[i]:上升子序列长度为i的结尾一个最小的一个数
a[i]每次使用二分来查找小于a[i]的最大数,并将a[i]插入q[i+1]数组
每次二分的过程,就是插入a[i]的过程
#include <bits/stdc++.h>
using namespace std;
const int N=100010;
int n;
int a[N],q[N];
int main()
{
scanf("%d",&n);
for(int i=0;i<n;i++) scanf("%d",&a[i]);
//比较奇特的二分
int len=0;
for(int i=0;i<n;i++)
{
int l=0,r=len;//终点会随着len的增大而增大
while(l<r)
{
int mid=l+r+1>>1;
if(q[mid]<a[i]) l=mid;
else r=mid-1;
}
len=max(len,r+1);
q[r+1]=a[i];
}
printf("%d\n",len);
return 0;
}
4.最长公共子序列
f[i][j]:所有a[1-i] b[1-j]的公共子序列的集合
状态计算:按照a[i] b[j]是否包含划分为4类
f[i-1][j-1]:都不包含,并且此状态不用单独讨论,已经包含在余下的几种状态里面
f[i-1][j] f[i][j-1]:a[i]不在b[j]在 a[i]在b[j]不在
f[i-1][j-1]+1: 二者都在且相等
#include <bits/stdc++.h>
using namespace std;
const int N=1010;
int n,m;
char a[N],b[N];
int f[N][N];
int main()
{
scanf("%d%d",&n,&m);
scanf("%s%s",a+1,b+1);//吃回车的新操作
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
f[i][j]=max(f[i-1][j],f[i][j-1]);
if(a[i]==b[j]) f[i][j]=max(f[i][j],f[i-1][j-1]+1);
}
cout<<f[n][m]<<endl;
return 0;
}
5.最短编辑距离
f[i][j]:所有将a[i]变成b[j]的操作方式
把a[1-i]变成b[1-j]执行三种操作
①删除a[i]后与b匹配:a[1~i-1]与b[1-j]相同——> f[i-1][j]+1
②增加a[i]后与b匹配:a[1~i]与b[1-j-1]相同——> f[i][j-1]+1
③把a的第i位变成b的第j位:前提:a[i]!=b[j];如果a[i]==b[j],需要保证a[i-1]=b[j-1]
#include <bits/stdc++.h>
using namespace std;
const int N=1010;
int f[N][N];
int n,m;
char a[N],b[N];
int main()
{
scanf("%d%s",&n,a+1);
scanf("%d%s",&m,b+1);
for(int i=0;i<=m;i++) f[0][i]=i;//a中没有。只能通过添加i次和b相等
for(int j=0;j<=n;j++) f[j][0]=j;//b中没有,只能通过a删除j次和b相等
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
f[i][j]=min(f[i-1][j],f[i][j-1])+1;
if(a[i]==b[j]) f[i][j]=min(f[i][j],f[i-1][j-1]);
else f[i][j]=min(f[i][j],f[i-1][j-1]+1);
}
cout<<f[n][m]<<endl;
return 0;
}
6.编辑距离【5.的简单应用】
#include <bits/stdc++.h>
using namespace std;
const int N=15,M=1010;
int n,m;
int f[N][N];
char str[M][N];
int edit_distance(char a[],char b[])
{
int la=strlen(a+1),lb=strlen(b+1);
for(int i=0;i<=lb;i++) f[0][i]=i;
for(int i=0;i<=la;i++) f[i][0]=i;
for(int i=1;i<=la;i++)
for(int j=1;j<=lb;j++)
{
f[i][j]=min(f[i-1][j],f[i][j-1])+1;
f[i][j]=min(f[i][j],f[i-1][j-1]+(a[i]!=b[j]));
}
return f[la][lb];
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=0;i<n;i++) scanf("%s",str[i]+1);
while(m--)
{
char s[N];
int limit;
scanf("%s%d",s+1,&limit);//从编号为1的下标开始输入s
int res=0;
for(int i=0;i<n;i++)
if(edit_distance(str[i],s)<=limit)
res++;
printf("%d\n",res);
}
return 0;
}
7.区间合并【区间DP】
#include <iostream>
using namespace std;
const int N=310;
int n;
int s[N];//前缀和
int f[N][N];
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&s[i]);
for(int i=1;i<=n;i++) s[i]+=s[i-1];
for(int len=2;len<=n;len++)//枚举区间长度
for(int i=1;i+len-1<=n;i++)//枚举区间左端点
{
int l=i,r=i+len-1;//记录区间右端点
f[l][r]=1e8;
for(int k=l;k<r;k++)
f[l][r]=min(f[l][r],f[l][k]+f[k+1][r]+s[r]-s[l-1]);
}
cout<<f[1][n]<<endl;
return 0;
}