模板题——线性DP基础+区间DP

1.数字三角形【由下到上】

#include <bits/stdc++.h>

using namespace std;
const int N=505;
int n;
int f[N][N],a[N][N];
int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=i;j++)
        scanf("%d",&a[i][j]);
    for(int i=1;i<=n;i++)
        f[n][i]=a[n][i];
    for(int i=n-1;i;i--)
        for(int j=1;j<=i;j++)
        f[i][j]=max(f[i+1][j],f[i+1][j+1])+a[i][j];
    cout<<f[1][1]<<endl;
    return 0;
}

2067.走方格【果然DP还要多多练习,干瞪眼做不出】

#include <bits/stdc++.h>

using namespace std;
const int N=40;
int n,m;
int f[N][N];

int main()
{
    cin>>n>>m;
    f[1][1]=1;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
    {
        if(i==1&&j==1) continue;
        if(i%2||j%2)
            f[i][j]=f[i-1][j]+f[i][j-1];
    }
    cout<<f[n][m]<<endl;
    return 0;
}

2.最长上升子序列

#include <bits/stdc++.h>

using namespace std;
const int N=1010;
int n;
int f[N],a[N];
int main()
{
    cin>>n;
    for(int i=1;i<=n;i++) cin>>a[i];
    for(int i=1;i<=n;i++)
    {
        f[i]=1;
        for(int j=1;j<n;j++)
            if(a[i]>a[j]) f[i]=max(f[i],f[j]+1);
    }
    int res=1;
    for(int j=1;j<=n;j++) res=max(res,f[j]);
    cout<<res<<endl;
    return 0;
}

3.最长上升子序列2【妙啊】(把玄学问题变成科学问题,虽然我还是想不到)

q[i]:上升子序列长度为i的结尾一个最小的一个数
a[i]每次使用二分来查找小于a[i]的最大数,并将a[i]插入q[i+1]数组
每次二分的过程,就是插入a[i]的过程
#include <bits/stdc++.h>

using namespace std;
const int N=100010;
int n;
int a[N],q[N];
int main()
{
    scanf("%d",&n);
    for(int i=0;i<n;i++) scanf("%d",&a[i]);
    //比较奇特的二分
    int len=0;
    for(int i=0;i<n;i++)
    {
        int l=0,r=len;//终点会随着len的增大而增大
        while(l<r)
        {
            int mid=l+r+1>>1;
            if(q[mid]<a[i]) l=mid;
            else r=mid-1;
        }
        len=max(len,r+1);
        q[r+1]=a[i];
    }
    printf("%d\n",len);
    return 0;
}

4.最长公共子序列

f[i][j]:所有a[1-i]  b[1-j]的公共子序列的集合
状态计算:按照a[i] b[j]是否包含划分为4类
f[i-1][j-1]:都不包含,并且此状态不用单独讨论,已经包含在余下的几种状态里面
f[i-1][j]   f[i][j-1]:a[i]不在b[j]在    a[i]在b[j]不在
f[i-1][j-1]+1: 二者都在且相等
#include <bits/stdc++.h>

using namespace std;
const int N=1010;
int n,m;
char a[N],b[N];
int f[N][N];
int main()
{
    scanf("%d%d",&n,&m);
    scanf("%s%s",a+1,b+1);//吃回车的新操作
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
    {
        f[i][j]=max(f[i-1][j],f[i][j-1]);
        if(a[i]==b[j]) f[i][j]=max(f[i][j],f[i-1][j-1]+1);
    }
    cout<<f[n][m]<<endl;
    return 0;
}

5.最短编辑距离

f[i][j]:所有将a[i]变成b[j]的操作方式
把a[1-i]变成b[1-j]执行三种操作
①删除a[i]后与b匹配:a[1~i-1]与b[1-j]相同——> f[i-1][j]+1
②增加a[i]后与b匹配:a[1~i]与b[1-j-1]相同——> f[i][j-1]+1
③把a的第i位变成b的第j位:前提:a[i]!=b[j];如果a[i]==b[j],需要保证a[i-1]=b[j-1]
#include <bits/stdc++.h>

using namespace std;
const int N=1010;
int f[N][N];
int n,m;
char a[N],b[N];
int main()
{
    scanf("%d%s",&n,a+1);
    scanf("%d%s",&m,b+1);
    for(int i=0;i<=m;i++) f[0][i]=i;//a中没有。只能通过添加i次和b相等
    for(int j=0;j<=n;j++) f[j][0]=j;//b中没有,只能通过a删除j次和b相等
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
    {
        f[i][j]=min(f[i-1][j],f[i][j-1])+1;
        if(a[i]==b[j]) f[i][j]=min(f[i][j],f[i-1][j-1]);
        else f[i][j]=min(f[i][j],f[i-1][j-1]+1);
    }
    cout<<f[n][m]<<endl;
    return 0;
}

6.编辑距离【5.的简单应用】

#include <bits/stdc++.h>

using namespace std;
const int N=15,M=1010;
int n,m;
int f[N][N];
char str[M][N];
int edit_distance(char a[],char b[])
{
    int la=strlen(a+1),lb=strlen(b+1);
    for(int i=0;i<=lb;i++) f[0][i]=i;
    for(int i=0;i<=la;i++) f[i][0]=i;
    for(int i=1;i<=la;i++)
        for(int j=1;j<=lb;j++)
    {
        f[i][j]=min(f[i-1][j],f[i][j-1])+1;
        f[i][j]=min(f[i][j],f[i-1][j-1]+(a[i]!=b[j]));
    }
    return f[la][lb];
}
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=0;i<n;i++) scanf("%s",str[i]+1);
    while(m--)
    {
        char s[N];
        int limit;
        scanf("%s%d",s+1,&limit);//从编号为1的下标开始输入s
        int res=0;
        for(int i=0;i<n;i++)
            if(edit_distance(str[i],s)<=limit)
            res++;
        printf("%d\n",res);
    }
    return 0;
}

7.区间合并【区间DP】

#include <iostream>

using namespace std;
const int N=310;
int n;
int s[N];//前缀和
int f[N][N];
int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++) scanf("%d",&s[i]);
    for(int i=1;i<=n;i++) s[i]+=s[i-1];
    for(int len=2;len<=n;len++)//枚举区间长度
    for(int i=1;i+len-1<=n;i++)//枚举区间左端点
    {
        int l=i,r=i+len-1;//记录区间右端点
        f[l][r]=1e8;
        for(int k=l;k<r;k++)
            f[l][r]=min(f[l][r],f[l][k]+f[k+1][r]+s[r]-s[l-1]);
    }
    cout<<f[1][n]<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值