图神经网络实战——基于Node2Vec的电影推荐系统
0. 前言
Node2Vec
是一种用于获取节点嵌入 (node embedding
) 的算法,它通过将图形数据转换为低维向量空间中的连续向量来捕捉节点之间的相似性。基于 Node2Vec 的电影推荐系统结合了图论和深度学习的方法来进行推荐。
在电影推荐系统中,可以将每部电影视为一个节点,而节点之间的连接则表示电影之间的关联或相似性。Node2Vec
算法可以在电影图谱上学习出每部电影的向量表示,这些向量可以捕获电影之间的隐含关系,例如共同的演员、导演、类型等等。一旦得到了电影的向量表示,就可以使用这些表示来计算电影之间的相似度,并基于相似度来进行推荐。通过将用户喜欢的电影与其向量表示进行比较,系统可以推荐与之相似的其他电影。在本节中,构建基于 Node2Vec
的电影推荐系统 (recommender system
, RecSys
)。
1. 基于 Node2Vec 的电影推荐系统
电影推荐系统 (recommender system
, RecSys
) 是图神经网络 (Graph Neur