图神经网络实战——基于Node2Vec的电影推荐系统

本文介绍了基于Node2Vec的电影推荐系统,通过构建电影图谱学习电影的向量表示,从而计算电影间的相似度进行推荐。通过分析用户评分数据,构建电影间的连接,使用Node2Vec学习节点嵌入,实现推荐功能。
摘要由CSDN通过智能技术生成

0. 前言

Node2Vec 是一种用于获取节点嵌入 (node embedding) 的算法,它通过将图形数据转换为低维向量空间中的连续向量来捕捉节点之间的相似性。基于 Node2Vec 的电影推荐系统结合了图论和深度学习的方法来进行推荐。
在电影推荐系统中,可以将每部电影视为一个节点,而节点之间的连接则表示电影之间的关联或相似性。Node2Vec 算法可以在电影图谱上学习出每部电影的向量表示,这些向量可以捕获电影之间的隐含关系,例如共同的演员、导演、类型等等。一旦得到了电影的向量表示,就可以使用这些表示来计算电影之间的相似度,并基于相似度来进行推荐。通过将用户喜欢的电影与其向量表示进行比较,系统可以推荐与之相似的其他电影。在本节中,构建基于 Node2Vec 的电影推荐系统 (recommender system, RecSys)。

1. 基于 Node2Vec 的电影推荐系统

电影推荐系统 (recommender system, RecSys) 是图神经网络 (Graph Neur

评论 71
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值