自监督表征预训练-MINM解读

Self-supervised representation pretraining:自监督表征预训练,分为2种,一类是类似于clip的对比学习,一类是掩码图像建模(Masked image modeling, MIM),基于我现在的工作背景,第二种方式我觉得是一种不可或缺的手段,因此需要进一步了解:

定义:

MIM:将图像中的某些图像块mask掉,然后用其他剩下的可见的图像块来预测被mask掉的图像块,然后进一步讲将这个任务变成一个接入下游任务的基础任务,将这个预训练的模型编程图像的编码器,则该编码器具备丰富的representation(表征和语义信息)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值