Self-supervised representation pretraining:自监督表征预训练,分为2种,一类是类似于clip的对比学习,一类是掩码图像建模(Masked image modeling, MIM),基于我现在的工作背景,第二种方式我觉得是一种不可或缺的手段,因此需要进一步了解:
定义:
MIM:将图像中的某些图像块mask掉,然后用其他剩下的可见的图像块来预测被mask掉的图像块,然后进一步讲将这个任务变成一个接入下游任务的基础任务,将这个预训练的模型编程图像的编码器,则该编码器具备丰富的representation(表征和语义信息)