【射频IC】通过Cadence ADE测量变压器Transfomer的性能指标 QLk

本文详细介绍了如何在CadenceADE中通过电磁仿真测量变压器的性能指标,包括品质因数、感值和耦合系数,涉及异端8边形变压器、s参数文件应用及QLk计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[射频IC] 通过Cadence ADE测量变压器Transfomer的性能指标 QLk

背景知识

变压器Transformer的性能指标:

Qp : 主线圈品质因数, Primary Q
Qs : 副线圈品质因数, Secondary Q
Lp : 主线圈感值, Primary Inductance
Ls : 副线圈感值, Secondary Inductance
k: 耦合系数, Coupling Coefficient

一个常见的异端进出, 4端口, 八边形的变压器 Opposite 4-port Octagon Transformer

示意图1
In Virtuoso Layout Editor:
在这里插入图片描述
进行电磁仿真(EM)以及QLK测量的前提是Layout能够通过工艺库的DRC, 且端口打上对应的Pin和Label.
电磁仿真的工具可以任意选择, 常用的有EMX, PeakView等, 最后获得一个扩展名为s4p的s参数文件就可以.

流程

  1. 电磁仿真结束后, cell中要生成一个n-port的schematic, 去调用s参数文件:
    在这里插入图片描述
    在这里插入图片描述
    这个nport的symbol来自于自带的analogLib, 可以调用s参数文件, 见图中S-parameter data file.

  2. 有了schematic之后还要建立它的symbol, 方便再后面的testbench中调用.
    在这里插入图片描述
    我的symbol是EMX自动生成的, 因此n1-n4的位置不合理, 但懒得改了, testbench里连的时候注意一下就行.

  3. 新建一个新cellview schematic, n1, n2为输入端, n3 n4为输出端, 输入输出端都要加一个balun (ideal_balun, from analogLib). 注意balun的连接端口不能错, 图中两个balun是水平翻转过的, 接Transformer的一端都是差分的, 接PORT0和PORT1都是单端的.
    在这里插入图片描述

  4. ADE sp仿真
    在这里插入图片描述
    其中sp仿真的扫频范围和步长自定, 一般覆盖到想测的那个目标频点就可以了. 这里的扫频设置没有那么重要, 前面为了获得s参数的电磁仿真的扫频设置才重要, 要尽量从0开始, 步长越小越精确. 这里的xfmr我事先知道他的工作频率在3GHz左右, 因此我设置了0-5GHz扫频, step=0.1GHz.
    在这里插入图片描述

  5. 最关键的QLK的公式
    Qp=imag(zpm(“sp” 1 1))/real(zpm(“sp” 1 1))
    Qs= imag(zpm(“sp” 2 2))/real(zpm(“sp” 2 2))
    Lp=imag(zpm(“sp” 1 1))/2/3.141593/xval(zpm(“sp” 1 1))
    Ls=imag(zpm(“sp” 2 2))/2/3.141593/xval(zpm(“sp” 2 2))
    k=imag(zpm(“sp” 1 2))/sqrt((imag(zpm(“sp” 1 1))imag(zpm(“sp” 2 2))))

结果

在这里插入图片描述

### Cadence仿真中的增益调整方法 Cadence是一款功能强大的EDA工具,广泛用于模拟和混合信号设计领域。在进行电路仿真时,增益是一个非常重要的参数,它直接影响系统的性能表现。以下是针对Cadence仿真中增益调整的方法以及可能遇到错误的解决方案。 #### 一、增益调整的核心原理 增益通常定义为输出信号幅度与输入信号幅度之比,在Cadence仿真环境中可以通过修改元件参数或优化电路拓扑来实现增益调整。具体来说: - **通过改变电阻值调节增益** 对于放大器类电路,增益往往由反馈网络中的电阻比例决定。例如,在反相运算放大器配置中,增益 \( G \) 可表示为: ```math G = -\frac{R_f}{R_i} ``` 修改 \( R_f \) 和 \( R_i \) 的数值即可控制增益大小[^1]。 - **利用电感或变压器提升增益** 在射频电路中,适当引入电感或变压器能够有效提高增益水平。这种做法尤其适合高频应用场景下的功率放大器设计。 #### 二、常见错误及其解决方案 1. **增益不匹配问题** 如果发现实际测量得到的增益偏离预期设定值,则可能是由于寄生效应或者模型精度不足引起。此时建议采取以下措施: - 使用更精确的器件模型替代默认近似版本; - 启用更高阶次的非线性分析选项以便捕捉细微变化特性; 2. **噪声干扰影响增益稳定性** 当存在较大程度随机波动现象时,可考虑运用Monte Carlo统计学手段评估不确定性因素作用效果,并据此优化设计方案以增强鲁棒性特征[^2]。 ```python # 示例Python脚本片段展示如何设置蒙特卡罗变量分布函数 import numpy as np def monte_carlo_gain_analysis(mean_value, std_deviation): sample_size = 1000 random_samples = np.random.normal(loc=mean_value, scale=std_deviation, size=sample_size) average_result = sum(random_samples)/len(random_samples) return average_result ``` 上述代码可用于初步估算因制造工艺偏差等因素造成的平均增益漂移情况。 --- ####
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值