【机器学习】多元高斯分布下的贝叶斯分类感知器

先来来看看随机连续分布下贝叶斯分类器模型。假设当前要使用贝叶斯分类器进行二分类的判别,数据集有随机分布,图像如下:


现在定义代价函数J,其中p1和p2表示已知的二分类出现的先验概率,c11,c12,c21,c22表示对应的经验代价权重参数,这些参数看做常量,X是多元变量的向量形式,C是正态分布下多元变量之间的协方差矩阵,如果多元变量之间是独立的,那么协方差矩阵非对角线元素都是0。公式(Van Trees)有:


然后代入多元高斯分布下的条件概率密度函数,m是数据维度(特征数量)。此处只针对二分类,其中i=1,2:


这样高斯分布下的贝叶斯分类器就退化成了感知器,只需要判断y=wx+b是否大于0即可进行分类。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值