机器学习基础

少年听雨歌楼上。红烛昏罗帐。壮年听雨客舟中。江阔云低、断雁叫西风。

而今听雨僧庐下。鬓已星星也。悲欢离合总无情。一任阶前、点滴到天明。

——虞美人·听雨 蒋捷

缘起

机器学习是当前最为热门的话题之一。自动驾驶、神经网络、人工智能等一个个”高大上“ 的词语不禁让我们眼花缭乱。抽丝拔茧后不难发现,这些技术都是与机器学习相关的。实际上,机器学习并不像我们相像中的那么高深,离我们也没有那么遥远,其基本原理还是非常容易理解的。那么,本篇文章就结合周志华老师的西瓜书及李航老师的统计学习方法两本书,对机器学习的相关概念及基本原理进行介绍,让机器学习不再那么遥不可及。

有人告诉我说我,书里每出现一个公式,都会让销量减半。 ——霍金

机器学习和数学及公式的关系极为密切,不涉及公式似乎不可能,但由于本篇只涉及机器学习的基本原理。为了不使读者减半,我决定不引入数学公式。

题外话

人类世界的运行,绝大多数都是由经验所支配的。比如人们认为明天的太阳一定从东方升起,从楼顶扔一块石头一定会向下掉落。同样,所有的物理定律都是对经验的总结,无论是牛顿定律还是量子力学,都是从过去的情形中总结的经验,并且这些经验能很好的预测未来。世界貌似是永远按照物理定律的规定在认真的运行着。

但是:

从来如此,便对么? ——鲁迅

之前有一千年甚至一亿年太阳都从东方升起,那明天的太阳就一定从东方升起吗?之前太阳的升起规律,就一定适用于明天吗? 当太阳一次次的从东方升起后,只能是增加了明天太阳从东方升起的可能性,并不能保证明天一定是这样。根据过去情形总结的经验,并一定能适用于未来。

我们生活在经验中,我们根据经验预测未来。但未来像一个调皮的孩子,它并不一定听我们的,虽然它已经听了很多次。也就是说,未来与过去,并没有必然的因果关系,即使我们从过去总结规律已经被验证了无数次。有因必有果,不一定是对的。

机器学习是什么

虽然从历史中总结的规规律不能决定未来,但是,如果一个规律在历史上被一次又一次的验证,我们就可以用此规律来预测未来,虽然这种预测可能不是100% 准确。

机器学习和上面所说的经验有什么关系呢?实际上,机器学习和我们人类活动非常类似,它的作用就是从大量的数据中学习到经验。并且将此经验运用到对未来数据的处理和分析中。《统计学习方法》一书中对机器学习做了如下的定义:

统计学习是关于计算机基于数据构建概率统计模型并运用模型对数据进行预测与分析的一门学科,统计学习也称为统计机器学习

我觉得这一定义是非常准确的。从中,我们可以总结出如下内容:

  • 机器学习的主体:计算机,这也是机器学习这一名称的由来。
  • 机器学习的作用对象:数据,也即历史数据。
  • 机器学习的产出:概率统计模型,通常简称为模型。
  • 机器学习的目标:运用产出的模型对数据进行预测和分析。即对未来的数据进行预测和分析,注意这里包含了预测和分析两项活动。

上述定义还隐含了一个内容,在利用数据构建模型的过程中,计算机实际上是利用了学习算法来生成模型的。

从上述分析中不难看出,机器学习的过程,和人类利用经验来预测未来的行为非常相似。都是利用历史经验来预测未来。那么,这里的 “历史经验” 就是从数据中得到的模型。因而,我们可以总结出如下的关系:

+===
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值