【Hot 100】198. 打家劫舍

请添加图片描述

  • 🙋‍♂️ 作者:海码007
  • 📜 专栏:算法专栏
  • 💥 标题:【Hot 100】198. 打家劫舍
  • ❣️ 寄语:书到用时方恨少,事非经过不知难!

引言

今天做题跳跃一点,开始动态规划专题。

打家劫舍

  • 🎈 题目链接:
  • 🎈 做题状态:

我的解题

这道题是一个典型的dp问题。也就是说后面的状态可以由前面的状态递归而来。首先回顾一下题目的要求,求解小偷沿屋偷窃完之后最大能盗取的金额。

动态规划的几个关键步骤如下:

  1. 定义dp数组,本题的dp[i]表示偷取 0 到 i-1 家房屋后最大能偷取的金额值。dp[0] 表示不偷取, dp[1]表示的是偷取 nums[0] 家金额的最大金额。 所以dp的大小是 nums.size() + 1.
  2. 状态转移方程,也就是状态推导公式。 dp[i] 表示偷取到 nums[i-1]家时的最大盗取金额,那么这个有两种情况,一种是偷取 nums[i-1] 家的钱,一种就是不偷取 nums[i-1] 家的钱。然后我们需要取这两种状态的最大值,也就是 dp[i + 1] = max(dp[i], dp[i-1] + nums[i]); dp[i+1] 如果不偷取 nums[i] 那么就是 dp[i] ,如果偷取的话,就需要取 dp[i-1] + nums[i] 这个值。
  3. 初始化dp数组,肯定要出事两个dp,也就是dp[0] 和 dp[1] 这两个
  4. 遍历顺序,本题只需要顺序遍历即可。
class Solution {
public:
    int rob(vector<int>& nums) {
        vector<int> dp(nums.size() + 1);
        dp[0] = 0;
        dp[1] = nums[0];

        for (int i = 1; i < nums.size(); ++i)
        {
            dp[i + 1] = max(dp[i], dp[i-1] + nums[i]);
        }

        return dp[nums.size()];
    }
};

代码优化

主要是优化了代码空间,因为当前状态主要由前两个状态决定,所以只需要两个变量来记录前两个状态即可。

class Solution {
public:
    int rob(vector<int>& nums) {
        int prev = 0, curr = 0;
        for (int num : nums) {
            int temp = max(curr, prev + num);
            prev = curr;
            curr = temp;
        }
        return curr;
    }
};

解法思路:

使用动态规划,通过两个变量 prevcurr 分别记录前前一个和当前的最大金额。每次遍历到一个新房屋时,计算偷或不偷该房屋的较大值,并更新这两个变量。这样既保证了时间复杂度为 O(n),空间复杂度为 O(1)。

步骤解析:

  1. 初始化: prevcurr 初始均为 0,表示没有房屋时的最大金额。
  2. 遍历每个房屋:
    • 计算当前房屋偷与不偷的最大值:temp = max(curr, prev + num)
    • 更新 prev 为之前的 currcurr 为新的最大值。
  3. 返回结果: 遍历结束后,curr 即为最终的最大金额。

复杂度分析:

  • 时间复杂度: O(n),只需遍历一次数组。
  • 空间复杂度: O(1),仅使用两个额外变量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值