Convergence of Newton's Method

目录

第7章 牛顿法收敛性

       续上一篇博客初学牛顿法,对牛顿法当中的一些疑问进行简单粗浅的分析及总结。
问题细化:
       牛顿法考虑二阶导数,求出海森矩阵,将一阶导除以二阶导作为新的改变量,这样收敛更快。但是一阶导除以二阶导后有可能导致一阶导变小,改变量不是变小了吗?下降不是减慢了吗?

7.1 图形角度

       以图形这个较为形象具体的形式对牛顿法收敛快进行解释。
       通俗地讲,梯度下降仅考虑当前位置坡度最大的方向,而牛顿法不仅考虑坡度够大,还要考虑走出这一步后坡度是否够大。
       上面这句话很常见也很通俗,但似乎还不够清楚,下面将结合图的形式进行更加详细具体的解析。
       在研究该问题之前首先要明白一个大前提,海森矩阵必须是正定的,那么函数的梯度在求解范围内递增,进一步可以认为函数是一个凸函数,如下图所示:
Alt text

图 5-1.函数图
       在上图中的两个函数在 $x>8$ 时具有相同的梯度,当 $x<8$ 时,红色曲线的收敛性将大于绿色曲线,为了早点到达极小值点,此时会选择红色曲线进行下降,这是对牛顿法将海森矩阵考虑在内的一种直观理解。        用下图来表示梯度递增的几种形式,根据牛顿法在走出一步后梯度依然够大的要求,我们会选择3曲线所代表的曲线进行梯度的下降。有图易知,当梯度较大时(距离极小值点较远时),梯度的梯度(海森矩阵)的值较小,且小于1,所以式子$x_{k+1}=x_k-\frac{g_k}{H_k}$中$x_k$的改变量不是减小而是增大,体现了牛顿法收敛快的特点。而当梯度较小时,梯度的梯度反而较大,缩小了$x_k$的改变量,从而降低了在极值点处震荡的风险。

Alt text

图 5-2.梯度变化图

7.2 理论角度

       根据一些已知结论或理论对牛顿法的合理性进行简单推导。
       牛顿法中引入了二阶导数,二阶导数会影响函数图像的下降方向和大小。二阶导数在几何当中的含义为曲率,代表几何体的弯曲程度,是该段曲线形成的圆半径的倒数,所以该二阶导数的变化趋势是递增。即对式子 x k + 1 = x k − g k H k x_{k+1}=x_k-\frac{g_k}{H_k} xk+1=xkHkgk 中的改变量进行调整,当远离极值点时加速下降,当靠近极值点则减缓下降。

因为懒且学得渣,所以没用什么专业软件来画函数图像,而是用网站desmos来画函数图像,不是很强大但还是能满足一些简单要求的,推荐给各位看官。

7.3 参考

[1] 大饼土博.最优化问题中,牛顿法为什么比梯度下降法求解需要的迭代次数更少?
[2].desmos

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值