线性代数学习笔记4

第十四集  正交向量与正交子空间
这里写图片描述
正交向量
这里写图片描述
正交就是垂直的另一种说法。两向量正交则 xTy=yTx=0 。当两个向量的夹角为90 度时,按照勾股定理x,y 满足:这里写图片描述
零向量与所有向量都正交。
正交子空间
子空间S 与子空间T 正交,则S 中的任意一个向量都和T 中的任意向量正交。
黑板所在的平面和地板所在平面不是正交关系。比如平面的子空间包括只包含零向量的0 空间、过原点的直线以及整个平面。0 空间和过原点的直线正交;经过原点的两条直线若夹角为直角则互相正交。
零空间与行空间正交
矩阵A 的行空间和它的零空间正交。若x 在零空间内,则有Ax=0,将A 表示为行向量的格式:
这里写图片描述
x 与矩阵A 的行向量点积都等于0,则它和矩阵A 行向量的线性组合进行点积也为0,所以x 与A 的行空间正交。x 为零空间内的任意向量,所以零空间与行空间正交。同理可以证明列空间与左零空间正交。
行空间和零空间实际上把 Rn 空间分割成了两个正交的子空间。例如对于矩阵:
这里写图片描述其行空间是1 维的,向量 [1,2,5] 是它的基向量,而其零空间是垂直于 [1,2,5] 并穿过原点的2 维平面。行空间和零空间不仅仅是正交,并且其维数之和等于n,我们称行空间和零空间为 Rn 空间内的正交补。这表示零空间包含所有和行空间正交的向量。
一个空间中正交子空间的维数之和不可能超过原空间的维数。之前提到的黑板和地板平面不是正交子空间的例子,二者都在3 维空间中,分别为2 维空间,2+2>3,因此不可能正交。
可以称目前讨论的这部分内容是线性代数基本定理的第二部分。第一部分是给出四个子空间和它们的维数,第二部分说明它们是两两互为正交补,第三部分讨论子空间的正交基。这些内容都反映在了本讲座开始的那幅图上。
如何求解一个无解方程组Ax=b 的解。
如果A 是长方形矩阵,m 大于n。当左侧方程数特别多的时候,容易混入“坏”数据,方程变得无解。但是对于数据的可信度我们无从判断,线性代数要做的就是在这种条件下求一个方程的“最优解”。矩阵 ATA 会发挥重要作用,它是一个n*n 方阵,并且是对称阵。
这里写图片描述
但是矩阵 ATA 并不总是可逆。
这里写图片描述
实际上矩阵 ATA 的秩等于A 的秩。因此矩阵 ATA 可逆要求A 的列向量线性无关。
本章的核心内容就是当Ax=b 无解的时候,求解 ATAx^=ATb 得到最优解。

第十五集  子空间投影
投影(射影)Projections
这里写图片描述
投影问题的几何解释就是:如何在向量a 的方向上寻找与向量b 距离最近的一点。从图中可以看出,这个距离最近的点p,这就是b 在a 上的投影。如果我们将向量p 视为b的一种近似,则长度e=b-p 就是这一近似的误差。因为p 在向量a 的方向上,因此可以令p=xa,而因为它和e 正交,我们可以得到方程: aT(bxa)=0 x=aTbaTa

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值