线性代数学习笔记6

本文主要探讨线性代数中的特征值和特征向量概念,通过实例解释特征向量如何在特定方向上保持平行,并介绍如何找到特征值。文章还讨论了矩阵的迹与特征值的关系,以及对称矩阵的特征向量正交性质。此外,文章提到了矩阵对角化、矩阵幂以及在图像压缩和傅里叶级数中的应用。
摘要由CSDN通过智能技术生成

第二十一集  特征值和特征向量
围绕特征值和特征向量的议题下讨论得都是方阵
将矩阵A 与向量x 相乘当做是对向量的一种操作或者函数,输入x 而输出Ax。
特征向量即在特定的向量x 方向上输出的Ax 平行于x,即为:
Ax=λx
其中x为矩阵A 的特征向量,而 λ 为A 的特征值
例1:矩阵P是朝向某平面的投影矩阵。P将向量b 投影到它距离平面最近的一点p=Pb。
这里写图片描述
b和Pb不是一个方向的,所以b不是特征向量。
对于这个平面之内的x,均有P x=x,因此x 是特征向量而1 为特征值。垂直于该平面的向量x 经投影得到P x=0,这个x 也是矩阵的特征向量而0 为特征值。矩阵P 的所有特征向量(平面上的特征向量与垂直于该平面的特征向量)张成了整个空间。
例2:交换矩阵这里写图片描述,是用来交换向量 (x1x2) 变为 (x2x1) 的,即 (x1x2)A = (x2x1) x1x2 为列向量, A 为列向量线性组合的系数。交换后的 (x2x1) 是初始向量 (x1x2) 与一个因子的乘积。所以 A 具有特征向量这里写图片描述,对应的特征向量为1;另一个特征向量为这里写图片描述,对应的特征向量为-1。这些特征向量张成了整个空间。因为是对称矩阵,其特征向量互相垂直。
这里写图片描述
任意n*n 矩阵A 具有n 个特征值,并且它们的和等于矩阵对角线上的元素之和,这个数值为矩阵的迹。
做如下数学处理: Ax=λx ,因此有 AλIx=0 。对于不为零向量的x,

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值