- 博客(43)
- 资源 (8)
- 收藏
- 关注
原创 香橙派OrangePi Zero开发板的WiFi连接
1.输入nmtui打开图形化页面2.通过上下键选择,回车Ethernet表示直连,这里我用的是wifi就不设置直连了,设置方式都一样3.选择连接的WiFi,回车上下键移动到IPv4 CONFIGURATION 上,选中Automatic,回车4.选择Manual,移动光标到Show,回车5.移动光标到Add,填写IP地址注意地址要在同一局域网段可以通过在cmd中输出ipconfig获取局域网ip地址局域网ip地址在192.168.0.(1~255)
2023-10-30 16:08:40
275
原创 前端Vue——安装和遇到的问题记录
再次打开cmd命令窗口,输入npm config set prefix “你的路径\node_global”(“你的路径”默认安装的状况下为C:\Program Files\nodejs)测试安装一个模块:npm install express -g // -g是全局安装的意思。最新版的node在安装时同时也安装了npm,执行npm -v查看npm版本,9.8.1。打开安装的目录(默认安装情况下在C:\Program Files\nodejs)删除C:\Users\用户\下的.npmrc文件。
2023-10-20 09:24:15
102
原创 Android_study
如果你想要应用程序中生成并发送自定义意图,你需要在活动类中通过sendBroadcast()来创建并发送这些意图。如果你使用sendStickyBroadcast(Intent)方法,则意图是持久的(sticky),这意味者你发出的意图在广播完成后一直保持着。com.runoob.CUSTOM_INTENT的意图可以像之前我们注册系统产生的意图一样被注册。
2023-06-29 23:38:53
78
原创 Android_study2
https://www.runoob.com/w3cnote/android-tutorial-intro.html菜鸟教程https://guolin.blog.csdn.net/ 郭霖。
2023-06-29 23:37:10
18
原创 Java_study_2
方法的重写(Overriding)和重载(Overloading)是java多态性的不同表现,重写是父类与子类之间多态性的一种表现,重载可以理解成多态的具体表现形式。(1)方法重载是一个类中定义了多个方法名相同,而他们的参数的数量不同或数量相同而类型和次序不同,则称为方法的重载(Overloading)。(2)方法重写是在子类存在方法与父类的方法的名字相同,而且参数的个数与类型一样,返回值也一样的方法,就称为重写(Overriding)。
2023-06-29 23:33:41
7
原创 Java_study
https://www.runoob.com/java/java-tutorial.html菜鸟教程https://wenku.baidu.com/view/dbaffcbd65ce0508763213e5.html语法大全目录文章目录目录基本知识数据类型内置数据类型引用数据类型常量&字面量类型转换变量修饰符访问控制修饰符公有访问修饰符public:受保护的访问修饰符protected:默认访问修饰符default:私有访问修饰符private:访问控制和继承非访问修饰符static 修饰符f
2023-06-29 23:33:08
16
原创 一些多教师蒸馏论文简读
AMTSS: An Adaptive Multi-Teacher Single-Student Knowledge Distillation Framework For Multilingual Language InferenceLearning Accurate, Speedy, Lightweight CNNs via Instance-Specific Multi-Teacher
2023-06-12 15:11:29
103
原创 论文翻译——On Compositions of Transformations in Contrastive Self-Supervised Learning(多模态自监督)
在图像域中,可以通过噪声对比学习诱导内容保持变换的不变性来学习优秀的表示。在本文中,我们将对比学习推广到更广泛的一组变换及其组成,以寻求不变性或独特性。我们表明,目前尚不清楚如何扩展SimCLR等现有方法。相反,我们引入了一些所有对比公式都必须满足的形式要求,并提出了一种满足这些要求的实用构造。为了最大限度地扩大这种分析的范围,我们将噪声对比公式的所有组成部分表示为数据的某些广义变换(GDT)的选择,包括数据采样。
2023-05-22 10:56:51
55
原创 论文翻译——Multi-modal Self-Supervision from Generalized Data Transformations(多模态自监督)
自监督学习最近的成功在很大程度上可以归功于内容保持变换,它可以用来容易地导出不变量。虽然转换在对比损失训练中生成正样本对,但最近的工作侧重于开发新的客观公式,而对转换本身的关注相对较少。在本文中,我们引入了广义数据变换的框架,以(1)将最近的几个自监督学习目标简化为一个单一的公式,便于比较、分析和扩展;(2)允许在数据变换不变或不同之间进行选择,获得不同的监督信号,以及(3)推导出转换的组合必须遵守的条件,以便实现适当的学习目标。该框架允许将不变性和独特性同时注入表示中,并使我们能够系统地探索新的对比目标。
2023-05-20 18:00:34
94
原创 一些知识蒸馏相关论文简读
MulDE: Multi-teacher Knowledge Distillation for Low-dimensional Knowledge Graph EmbeddingsKnowledge Transfer via Dense Cross-Layer Mutual-DistillationDistilling a Powerful Student Model via Online Knowledge DistillationDistill on the Go: Online knowledg
2023-05-12 16:29:13
185
原创 Multimodal Object Detection via Probabilistic Ensembling——基于概率集成实现多模态目标检测
ECCV2022 | 多模态融合检测新范式!基于概率集成实现多模态目标检测github代码
2023-05-11 09:39:58
291
原创 知识蒸馏论文翻译(12)—— Adaptive Multi-Teacher Multi-level Knowledge Distillation
知识提取(KD)是一种有效的学习范式,通过利用从教师网络中提取的额外监督知识来提高轻量级学生网络的性能。大多数开创性研究要么只从一位老师那里学习提炼学习方法,忽视了学生可以同时从多位老师那里学习的潜力,要么只是将每位老师视为同等重要的老师,无法通过具体的例子揭示教师的不同重要性。为了弥补这一差距,我们提出了一种新的自适应多教师多级知识提取学习框架(AMTML-KD),它包括两个新的见解:(i)将每个教师与潜在表示相关联,以自适应地学习实例级教师重要性权重,这些权重用于获取综合软目标(高级知识);
2023-05-10 12:13:42
261
原创 知识蒸馏论文翻译(11)—— Knowledge Transfer via Dense Cross-Layer Mutual-Distillation
基于知识蒸馏(KD)的方法采用单向知识转移(KT)方案,在该方案中,由预先训练的高容量教师网络来指导低容量学生网络的训练。最近,深度相互学习(DML)提出了一种双向KT策略,表明学生网络也有助于改善教师网络。在本文中,我们提出了密集跨层相互蒸馏(DCM),这是一种改进的双向KT方法,其中教师和学生网络从头开始协同训练。为了增强知识表示学习,在教师和学生网络的某些隐藏层中添加了精心设计的辅助分类器。为了提高KT性能,我们在附加分类器的层之间引入了密集的双向KD操作。
2023-05-10 10:44:43
149
原创 知识蒸馏论文翻译(10)—— A Fast Knowledge Distillation Framework for Visual Recognition
虽然知识蒸馏(KD)已被公认为许多视觉任务中的有用工具,如监督分类和自监督表示学习,但普通KD框架的主要缺点是其机制,它消耗了通过巨大教师网络转发的大部分计算开销,使得整个学习过程效率低下且成本高昂。最近提出的解决方案ReLabel[52]建议为整个图像创建一个标签图。在培训期间,它通过在预先生成的整个标签图上进行RoI对齐来接收裁剪的区域级标签,从而实现高效的监督生成,而无需多次通过教师。
2023-05-09 16:22:50
143
原创 LeetCode算法
回溯算法」强调了「深度优先遍历」思想的用途,用一个 不断变化 的变量,在尝试各种可能的过程中,搜索需要的结果。size 表示在当前遍历层有多少个元素,也就是队列中的元素数,我们把这些元素一次性遍历完,即把当前层的所有元素都向外走了一步。(3)动态规划结局的问题必须包含最优子结构,即可以有(n-1)的最优推导出n的最优。递归:“归”的过程是产生答案的过程,“递”的过程是将大问题分解成子问题的过程。(2)动态规划解决 的问题一般是离散的,可以分解的(划分阶段的)。,通过深度优先遍历的思想实现。
2023-04-08 00:21:53
40
原创 Python
list: 允许重复,有序,有下标,可切片tuple: 允许重复,里面元素不能进行增删改,只能查看dict: 字典里的元素以键值对的形式存在 键:唯一性 值:可以重复set: 元素不允许重复,且具有无序性。
2023-04-08 00:10:13
92
原创 LeetCode题
必须注意的是,贪心算法不是对所有问题都能得到整体最优解,选择的贪心策略必须具备无后效性,即某个状态以后的过程不会影响以前的状态,只与当前状态有关。因为我们的最大分数总是在最后一个队员处取得(对于相同年龄的,我们是按照分数升序排序的,所以分数较高的一定在更后面),同时第 iii 个队员的年龄不小于之前任意队员的年龄,所以只要第。我们使用一个长度和 s1 长度相等的固定窗口大小的滑动窗口,在 s2 上面从左向右滑动,判断 s2 在滑动窗口内的每个字符出现的个数是否跟 s1 每个字符出现次数完全相等。
2023-04-08 00:08:33
95
翻译 在线蒸馏论文翻译——Peer Collaborative Learning for Online Knowledge Distillation
传统的知识蒸馏使用两阶段训练策略将知识从高容量教师模型转移到紧凑的学生模型,这严重依赖于预先训练的教师。最近的在线知识提炼通过协作学习、相互学习和在线集成,遵循一个阶段的端到端培训方式,减轻了这一限制。然而,协作学习和相互学习无法构建在线高容量教师,而在线集成忽略了分支之间的协作,其逻辑总和阻碍了集成教师的进一步优化。在这项工作中,我们提出了一种新的用于在线知识提取的对等协作学习方法,该方法将在线集合和网络协作集成到一个统一的框架中。
2023-03-21 13:12:33
181
翻译 在线蒸馏论文翻译——Online Knowledge Distillation via Collaborative Learning
这项工作通过协作学习提出了一种高效而有效的在线知识提取方法,称为KDCL,它能够持续提高具有不同学习能力的深度神经网络(DNN)的泛化能力。与现有的两阶段知识提取方法不同,即预先训练一个具有大容量的DNN作为“教师”,然后将教师的知识单向(即单向)转移到另一个“学生”DNN,KDCL将所有DNN视为“学生”,并在单个阶段对其进行协作训练(在协作训练期间,知识在任意学生之间转移),实现并行计算、快速计算和吸引人的泛化能力。
2023-03-21 13:04:01
244
翻译 论文翻译——Revisiting Self-Supervised Visual Representation Learning
在计算机视觉研究中,无监督的视觉表征学习仍然是一个很大程度上尚未解决的问题。在最近提出的大量无监督视觉表示学习方法中,一类自监督技术在许多具有挑战性的基准测试上取得了优异的性能。已经研究了大量用于自我监督学习的借口任务,但其他重要方面,如卷积神经网络(CNN)的选择,尚未得到同等重视。因此,我们重新审视了许多先前提出的自我监督模型,进行了彻底的大规模研究,结果发现了多个关键见解。我们挑战了自监督视觉表示学习中的一些常见实践,并观察到CNN设计的标准配方并不总是转化为自监督表示学习。
2023-02-27 15:17:45
186
翻译 目标检测论文翻译——Instance Localization for Self-supervised Detection Pretraining(自监督)
先前关于自监督学习的研究已经在图像分类方面取得了相当大的进展,但在目标检测方面的传递性能通常会降低。本文的目的是提出专门用于对象检测的自监督预训练模型。基于分类和检测之间的固有差异,我们提出了一种新的自我监督的借口任务,称为实例定位。图像实例粘贴在不同的位置并缩放到背景图像上。借口任务是预测给定合成图像以及前景边界框的实例类别。我们表明,将边界框集成到预训练中可以促进迁移学习的更好的任务对齐和架构对齐。此外,我们提出了一种增强边界框的方法,以进一步增强特征对齐。
2023-02-24 10:50:07
249
翻译 在线蒸馏论文翻译——Online Knowledge Distillation via Mutual Contrastive Learning for Visual Recognition(对比学习)
教师免费在线知识蒸馏(KD)旨在协同训练多个学生模型的集合,并从彼此中提取知识。尽管现有的在线KD方法实现了理想的性能,但它们通常将类概率作为核心知识类型,而忽略了有价值的特征表示信息。我们提出了一个用于在线KD的相互对比学习(MCL)框架。MCL的核心思想是以在线方式在一组网络之间执行对比分布的相互交互和传递。我们的MCL可以聚合跨网络嵌入信息,并最大化两个网络之间相互信息的下界。这使得每个网络能够从其他网络学习额外的对比知识,从而获得更好的特征表示,从而提高视觉识别任务的性能。
2022-12-17 22:36:59
302
翻译 论文翻译——Learning in Audio-visual Context: A Review, Analysis, and New Perspective(视听环境中的学习:回顾、分析和新视角)
视觉和听觉是两种感官,在人类交流和场景理解中起着至关重要的作用。为了模拟人类的感知能力,近年来,视听学习一直是一个蓬勃发展的领域,其目的是开发从音频和视觉模式中学习的计算方法。预计将进行一次全面的调查,以系统地组织和分析视听领域的研究。从视听认知基础的分析开始,我们介绍了启发我们计算研究的几个关键发现。然后,我们系统地回顾了最近的视听学习研究,并将其分为三类:视听促进、跨模态感知和视听协作。通过我们的分析,我们发现,视听数据在语义、空间和时间上的一致性支持了上述研究。
2022-11-24 14:53:12
298
翻译 论文翻译——Catch Me If You Hear Me: Audio-Visual Navigation in Complex Unmapped Environments with Moving
视听导航结合视觉和听觉,在未映射的环境中导航到声音发射源。虽然最近的方法已经证明了音频输入对检测和找到目标的好处,但它们专注于干净和静态的声音源,并努力推广到闻所未闻的声音。在这项工作中,我们提出了一种新颖的动态视听导航基准,它需要在嘈杂和分散注意力的环境中捕捉移动的声源,这带来了一系列新的挑战。我们引入了一种强化学习方法,该方法学习针对这些复杂设置的鲁棒导航策略。为了实现这一点,我们提出了一种架构,该架构融合了空间特征空间中的视听信息,以学习局部地图和音频信号中固有的几何信息的相关性。
2022-11-24 11:01:27
1271
翻译 论文翻译——Self-Supervised Moving Vehicle Detection From Audio-Visual Cues(基于视听线索的自监督运动车辆检测)
对于任何自主操作的户外机器人或自动驾驶车辆来说,运动车辆的鲁棒检测是一项关键任务。解决这一任务的大多数现代方法依赖于使用大型车辆检测数据集(如nuScenes或Waymo Open数据集)训练基于图像的检测器。提供手动注释是一项昂贵且费力的工作,在实践中无法很好地扩展。为了解决这个问题,我们提出了一种自我监督的方法,该方法利用视听线索来检测视频中的移动车辆。我们的方法使用对比学习从对应的图像对和记录的音频中定位图像中的车辆。
2022-11-24 09:58:31
148
原创 SSD: Single Shot MultiBox Detector 论文翻译
XXXXXXX我们提出了一种利用单一的深度神经网络来检测图像中的目标的方法。我们的方法名为SSD,它将不同的高宽比和比例的边界框的输出空间离散为一组默认框。在预测时,网络为每个默认框中每个对象类别的存在生成分数,并对该框进行调整,以更好地匹配对象形状。此外,该网络结合了来自不同分辨率的多个特征地图的预测,以自然地处理不同大小的对象。相对于需要对象建议的方法,SSD很简单,因为它完全消除了建议生成和后续的像素或特征重采样阶段,并将所有计算封装在单个网络中。这使得SSD易于训练,并可以直接集成到需要一个检测组
2022-06-01 17:09:08
1272
1
转载 目标检测评价指标
文章目录评价指标:1、准确率 (Accuracy)2、混淆矩阵 (Confusion Matrix)3、精确率(Precision)与召回率(Recall)4、平均精度(Average-Precision,AP)与 mean Average Precision(mAP)5、IoU6、ROC(Receiver Operating Characteristic)曲线与AUC(Area Under Curve)7、PR曲线和ROC曲线比较8、非极大值抑制(NMS)转载:https://www.cnblogs.c
2022-05-27 10:19:57
151
原创 知识蒸馏论文翻译(9)—— Multi-level Knowledge Distillation via Knowledge Alignment and Correlation
知识蒸馏论文翻译(9)—— Multi-level Knowledge Distillation via Knowledge Alignment and Correlation基于知识对齐和关联的多层次知识蒸馏文章目录知识蒸馏论文翻译(9)—— Multi-level Knowledge Distillation via Knowledge Alignment and Correlation摘要一、介绍二、相关工作三、多层次知识提炼3.1 知识整合3.2 知识关联3.3 有监督的知识提炼3.4 MLKD
2022-04-23 17:44:19
3314
1
原创 知识蒸馏论文翻译(8)—— Knowledge Distillation Meets Self-Supervision(自监督)
知识蒸馏是一种重要的模型压缩和迁移学习技术,它涉及从教师网络中提取“暗知识”来指导学生网络的学习。与以前利用特定于体系结构的线索(如激活和注意力)进行蒸馏的工作不同,这里我们希望探索一种更通用、模型不可知的方法,从预先培训过的教师模型中提取“更丰富的黑暗知识”。我们表明,看似不同的自我监督任务可以作为一个简单而强大的解决方案。例如,在转换实体之间进行对比学习时,教师网络的噪声预测反映了其语义和姿势信息的内在组成
2022-04-22 16:54:42
825
1
原创 知识蒸馏论文翻译(7)—— Knowledge Distillation from Internal Representations(内部表征)
知识蒸馏论文翻译(7)—— Knowledge Distillation from Internal Representations(内部表征)文章目录知识蒸馏论文翻译(7)—— Knowledge Distillation from Internal Representations(内部表征)摘要一、介绍二、相关工作三、方法四、实验五、结论摘要知识提炼通常是通过训练一个小模型(学生)来模仿一个大而笨重的模型(老师)。其想法是通过使用输出概率作为软标签来优化学生,从而压缩来自教师的知识。然而,当教师人
2022-04-22 16:01:51
1821
原创 知识蒸馏论文翻译(6)——FEED: Feature-level Ensemble for Knowledge Distillation
知识蒸馏论文翻译(6)——FEED: Feature-level Ensemble for Knowledge DistillationFEED:用于知识提炼的特征级集成文章目录知识蒸馏论文翻译(6)——FEED: Feature-level Ensemble for Knowledge Distillation摘要一、介绍二、相关工作三、提出的训练算法3.1 并行FEED3.2 连续的FEED四、实验4.1 FEED损失的有效性4.2 FEED并行4.3 连续FEED4.4 定性分析五、讨论结论摘
2022-04-16 19:07:04
2558
原创 知识蒸馏论文翻译(5)—— Feature Normalized Knowledge Distillation for Image Classification(图像分类)
知识蒸馏论文翻译(5)—— Feature Normalized Knowledge Distillation for Image Classification(图像分类)用于图像分类的特征归一化知识蒸馏文章目录知识蒸馏论文翻译(5)—— Feature Normalized Knowledge Distillation for Image Classification(图像分类)摘要一、介绍二、相关工作三、方法3.1 One-Hot 标签中的噪声3.23.3 倒数第二层中的特征3.4 特征规范化知识提
2022-04-15 14:51:00
3074
原创 知识蒸馏论文翻译(4)—— Exclusivity-Consistency Regularized Knowledge Distillation for Face Recognition
知识蒸馏论文翻译(4)—— Exclusivity-Consistency Regularized Knowledge Distillation for Face Recognition排他一致性正则化人脸识别知识提取文章目录知识蒸馏论文翻译(4)—— Exclusivity-Consistency Regularized Knowledge Distillation for Face Recognition摘要一、介绍二、相关工作三、提出的方法3.1权重排他性3.2 特征一致性3.3 排他性一致性规范
2022-04-14 23:43:59
291
原创 知识蒸馏论文翻译(3)—— Ensembled CTR Prediction via Knowledge Distillation
知识蒸馏论文翻译(3)—— Ensembled CTR Prediction via Knowledge Distillation经由知识蒸馏的集合CTR预测文章目录知识蒸馏论文翻译(3)—— Ensembled CTR Prediction via Knowledge Distillation摘要一、介绍二、背景2.1 CTR 预测2.2 知识蒸馏三、综合CTR预测3.1 概述3.2 从一位老师那里得到的蒸馏3.4 训练四、实验五、相关工作六、结论摘要最近,基于深度学习的模型已被广泛研究用于点击
2022-04-14 16:04:40
508
原创 知识蒸馏论文翻译(2) —— Distilling Knowledge via Knowledge Review(知识回顾、知识提炼)
知识蒸馏论文翻译(2)——(2)Distilling Knowledge via Knowledge Review(知识回顾、知识提炼)通过知识回顾提炼知识。文章目录知识蒸馏论文翻译(2)——(2)Distilling Knowledge via Knowledge Review(知识回顾、知识提炼)摘要一、介绍二、相关工作三、方法3.1 Review Mechanism3.2 剩余学习框架3.3 ABF and HCL四、实验4.1 Classification4.2 目标检测4. 3 实例分割4.
2022-04-13 21:36:48
479
原创 MM-DistillNet问题and解决
问1:mp3_to_pkl.py audioread.exceptions.NoBackendError Error opening ‘160379207_4.mp3’:File contains data in an unknown format.解决1:1.pip uninstall librosa pip install librosa==0.6.1 2.windows下解决librosa NoBackendError问题 conda install ffmp
2022-04-13 14:09:53
635
COMPOW 协议下的网络连接和覆盖
2020-05-22
WSN连通率与通信半径以及网络规模之间的关系
2020-05-22
人工智能糖尿病数据集训练及测试
2020-05-22
用VC6++配置的OpenGL绘制3D机器人和猫
2020-05-22
用VC6++配置的OpenGL绘制彩色自行车
2020-05-22
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人