~拾捌~
码龄4年
  • 11,729
    被访问
  • 13
    原创
  • 106,908
    排名
  • 4
    粉丝
  • 0
    铁粉
关注
提问 私信
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2018-04-24
博客简介:

lsfeitianzhuzhuxia的博客

查看详细资料
  • 2
    领奖
    总分 124 当月 1
个人成就
  • 获得0次点赞
  • 内容获得1次评论
  • 获得20次收藏
创作历程
  • 13篇
    2022年
  • 1篇
    2020年
成就勋章
TA的专栏
  • 知识蒸馏论文翻译
    9篇
  • pytorch
    2篇
兴趣领域 设置
  • Python
    python
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

SSD: Single Shot MultiBox Detector 论文翻译

XXXXXXX我们提出了一种利用单一的深度神经网络来检测图像中的目标的方法。我们的方法名为SSD,它将不同的高宽比和比例的边界框的输出空间离散为一组默认框。在预测时,网络为每个默认框中每个对象类别的存在生成分数,并对该框进行调整,以更好地匹配对象形状。此外,该网络结合了来自不同分辨率的多个特征地图的预测,以自然地处理不同大小的对象。相对于需要对象建议的方法,SSD很简单,因为它完全消除了建议生成和后续的像素或特征重采样阶段,并将所有计算封装在单个网络中。这使得SSD易于训练,并可以直接集成到需要一个检测组
原创
发布博客 2022.06.01 ·
127 阅读 ·
0 点赞 ·
1 评论

目标检测评价指标

文章目录评价指标:1、准确率 (Accuracy)2、混淆矩阵 (Confusion Matrix)3、精确率(Precision)与召回率(Recall)4、平均精度(Average-Precision,AP)与 mean Average Precision(mAP)5、IoU6、ROC(Receiver Operating Characteristic)曲线与AUC(Area Under Curve)7、PR曲线和ROC曲线比较8、非极大值抑制(NMS)转载:https://www.cnblogs.c
转载
发布博客 2022.05.27 ·
25 阅读 ·
0 点赞 ·
0 评论

知识蒸馏论文翻译(9)—— Multi-level Knowledge Distillation via Knowledge Alignment and Correlation

知识蒸馏论文翻译(9)—— Multi-level Knowledge Distillation via Knowledge Alignment and Correlation基于知识对齐和关联的多层次知识蒸馏文章目录知识蒸馏论文翻译(9)—— Multi-level Knowledge Distillation via Knowledge Alignment and Correlation摘要一、介绍二、相关工作三、多层次知识提炼3.1 知识整合3.2 知识关联3.3 有监督的知识提炼3.4 MLKD
原创
发布博客 2022.04.23 ·
2729 阅读 ·
0 点赞 ·
0 评论

知识蒸馏论文翻译(8)—— Knowledge Distillation Meets Self-Supervision(自监督)

知识蒸馏是一种重要的模型压缩和迁移学习技术,它涉及从教师网络中提取“暗知识”来指导学生网络的学习。与以前利用特定于体系结构的线索(如激活和注意力)进行蒸馏的工作不同,这里我们希望探索一种更通用、模型不可知的方法,从预先培训过的教师模型中提取“更丰富的黑暗知识”。我们表明,看似不同的自我监督任务可以作为一个简单而强大的解决方案。例如,在转换实体之间进行对比学习时,教师网络的噪声预测反映了其语义和姿势信息的内在组成
原创
发布博客 2022.04.22 ·
202 阅读 ·
0 点赞 ·
0 评论

知识蒸馏论文翻译(7)—— Knowledge Distillation from Internal Representations(内部表征)

知识蒸馏论文翻译(7)—— Knowledge Distillation from Internal Representations(内部表征)文章目录知识蒸馏论文翻译(7)—— Knowledge Distillation from Internal Representations(内部表征)摘要一、介绍二、相关工作三、方法四、实验五、结论摘要知识提炼通常是通过训练一个小模型(学生)来模仿一个大而笨重的模型(老师)。其想法是通过使用输出概率作为软标签来优化学生,从而压缩来自教师的知识。然而,当教师人
原创
发布博客 2022.04.22 ·
1508 阅读 ·
0 点赞 ·
0 评论

知识蒸馏论文翻译(6)——FEED: Feature-level Ensemble for Knowledge Distillation

知识蒸馏论文翻译(6)——FEED: Feature-level Ensemble for Knowledge DistillationFEED:用于知识提炼的特征级集成文章目录知识蒸馏论文翻译(6)——FEED: Feature-level Ensemble for Knowledge Distillation摘要一、介绍二、相关工作三、提出的训练算法3.1 并行FEED3.2 连续的FEED四、实验4.1 FEED损失的有效性4.2 FEED并行4.3 连续FEED4.4 定性分析五、讨论结论摘
原创
发布博客 2022.04.16 ·
2215 阅读 ·
0 点赞 ·
0 评论

知识蒸馏论文翻译(5)—— Feature Normalized Knowledge Distillation for Image Classification(图像分类)

知识蒸馏论文翻译(5)—— Feature Normalized Knowledge Distillation for Image Classification(图像分类)用于图像分类的特征归一化知识蒸馏文章目录知识蒸馏论文翻译(5)—— Feature Normalized Knowledge Distillation for Image Classification(图像分类)摘要一、介绍二、相关工作三、方法3.1 One-Hot 标签中的噪声3.23.3 倒数第二层中的特征3.4 特征规范化知识提
原创
发布博客 2022.04.15 ·
2531 阅读 ·
0 点赞 ·
0 评论

知识蒸馏论文翻译(4)—— Exclusivity-Consistency Regularized Knowledge Distillation for Face Recognition

知识蒸馏论文翻译(4)—— Exclusivity-Consistency Regularized Knowledge Distillation for Face Recognition排他一致性正则化人脸识别知识提取文章目录知识蒸馏论文翻译(4)—— Exclusivity-Consistency Regularized Knowledge Distillation for Face Recognition摘要一、介绍二、相关工作三、提出的方法3.1权重排他性3.2 特征一致性3.3 排他性一致性规范
原创
发布博客 2022.04.14 ·
42 阅读 ·
0 点赞 ·
0 评论

知识蒸馏论文翻译(3)—— Ensembled CTR Prediction via Knowledge Distillation

知识蒸馏论文翻译(3)—— Ensembled CTR Prediction via Knowledge Distillation经由知识蒸馏的集合CTR预测文章目录知识蒸馏论文翻译(3)—— Ensembled CTR Prediction via Knowledge Distillation摘要一、介绍二、背景2.1 CTR 预测2.2 知识蒸馏三、综合CTR预测3.1 概述3.2 从一位老师那里得到的蒸馏3.4 训练四、实验五、相关工作六、结论摘要最近,基于深度学习的模型已被广泛研究用于点击
原创
发布博客 2022.04.14 ·
73 阅读 ·
0 点赞 ·
0 评论

知识蒸馏论文翻译(2) —— Distilling Knowledge via Knowledge Review(知识回顾、知识提炼)

知识蒸馏论文翻译(2)——(2)Distilling Knowledge via Knowledge Review(知识回顾、知识提炼)通过知识回顾提炼知识。文章目录知识蒸馏论文翻译(2)——(2)Distilling Knowledge via Knowledge Review(知识回顾、知识提炼)摘要一、介绍二、相关工作三、方法3.1 Review Mechanism3.2 剩余学习框架3.3 ABF and HCL四、实验4.1 Classification4.2 目标检测4. 3 实例分割4.
原创
发布博客 2022.04.13 ·
78 阅读 ·
0 点赞 ·
0 评论

问题and解决

问1:mp3_to_pkl.py​ audioread.exceptions.NoBackendError​ Error opening ‘160379207_4.mp3’:File contains data in an unknown format.解决1:1.pip uninstall librosa​ pip install librosa==0.6.1​ 2.windows下解决librosa NoBackendError问题​ conda install ffmp
原创
发布博客 2022.04.13 ·
587 阅读 ·
0 点赞 ·
0 评论

代码pytorch

model.train() 和 model.eval()一般在模型训练和评价的时候会加上这两句,主要是针对由于model 在训练时和评价时 Batch Normalization 和 Dropout 方法模式不同:model.eval(),不启用 BatchNormalization 和 Dropout。此时pytorch会自动把BN和DropOut固定住,不会取平均,而是用训练好的值。不然的话,一旦test的batch_size过小,很容易就会因BN层导致模型performance损失较大;mod
原创
发布博客 2022.04.13 ·
77 阅读 ·
0 点赞 ·
0 评论

知识蒸馏论文翻译(1)——CONFIDENCE-AWARE MULTI-TEACHER KNOWLEDGE DISTILLATION(多教师知识提炼)

基于置信度的多教师知识蒸馏(CA-MKD),该方法在地面真值标签的帮助下,自适应地为每个教师预测分配样本可靠度,并为那些接近一个热标签的教师预测分配较大的权重。此外,CA-MKD还结合了中间层的特征,以稳定知识转移过程。
原创
发布博客 2022.04.13 ·
1428 阅读 ·
0 点赞 ·
0 评论

视觉物联网——车牌提取matlab

发布资源 2020.05.22 ·
zip

视觉物联网实验一图像处理

发布资源 2020.05.22 ·
zip

视觉物联网——肤色检测

发布资源 2020.05.22 ·
zip

COMPOW 协议下的网络连接和覆盖

发布资源 2020.05.22 ·
zip

WSN连通率与通信半径以及网络规模之间的关系

发布资源 2020.05.22 ·
zip

人工智能糖尿病数据集训练及测试

发布资源 2020.05.22 ·
zip

用VC6++配置的OpenGL绘制3D机器人和猫

发布资源 2020.05.22 ·
zip
加载更多