02_TF常量与变量

在这里插入图片描述


博文配套视频课程:24小时实现从零到AI人工智能


标量、向量、张量

标量占据的是零维数组,向量占据的是一维数组 (语言信号),矩阵占据的是二维数组 (灰度图),张量占据的是3维乃至更高维度的数组,例如:RGB图像和视频

在这里插入图片描述

TensorFlow数据类型

TensorFlow与Python一样对数据类型要求非常严格,而且不支持自动类型转化,这是因为Py与TF本身主要的应用场景是数据挖掘与机器学习,这样的背景通常会进行大量的矩阵运算,如果数据类型不严格或者支持自动类型转化,会导致运算效率变低和运算结果不可预期。

在这里插入图片描述

TensorFlow常量操作

  1. Tensor 代表就是TF的数据结构,张量本身又分为三种:常量,变量,占位符
  2. 真正启动Session, 连接到时graph时张量才能被操作
  3. TF采用的是类似数据库的的声明式编程,Session前面都可以理解成声明,只有调用sess.run才代表真正的执行操作
import tensorflow as tf

# 创建两个常量 (常量:在深度学习过程中不能改变的变量)
a = tf.constant(value=3.14,dtype=tf.float32)
# 浮点类型默认tf.float32,整型默认为tf.int32
b = tf.constant(value=3.14,dtype=tf.float32)

print("a=",a)
print("b=",b)

# tensorflow 类似sql的声明式编程, 如果要执行变量,则必须创建一个session
sess = tf.Session()  # session会连接graph图(所有运算的代码必需在图中执行)
print(sess.run(a+b))
sess.close()

TensorFlow变量操作

  1. 通过with方式获取session可以不用关闭。
  2. 所有变量在执行之前必须用进行 sess.run(tf.global_variables_initializer()) 初始化操作。
  3. Tensor张量四个重要属性:value、dtype、shape、name。
# tf 基本语法, 张量: (常量,变量,占位符)
import tensorflow as tf

# 创建两个常量 (常量:在深度学习过程中不能改变的变量)
a = tf.constant(value=3.14,dtype=tf.float32)
# 浮点类型默认tf.float32
b = tf.constant(value=3.14,dtype=tf.float32)

print("a=",a)
print("b=",b)

c = a + b
# 变量:在深度学习过程中可以改变的变量,通常用来存储模型的参数
d = tf.Variable(initial_value=3.14,dtype=tf.float32)
e = tf.add(d,c)

# 通过with方法系统会自动关闭session
with tf.Session() as sess:
    # 变量必须显示声明初始化
    sess.run(tf.global_variables_initializer())
    print(sess.run(e))

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值