萌新在学习的过程,总是遇到各路大神写的优秀帖子,这里做分门别类,更新中…
优秀入门博主
仅囊括本萌新遇见:
谢小小XH: 机器学习方面的数学原理总结
Physcalの大魔導書:激活函数稀疏激活性的作者,待串门
Freedom_anytime:机器学习&深度学习大牛博客专栏总结
zhanlijun:剖析过贝叶斯定位
会议
2018年【计算机视觉&机器学习&人工智能】领域重要会议 汇总(持续更新)
导航
机器学习
- 深度学习里常用激活函数,目标函数
- 机器学习笔记十:各种熵总结
- 交叉熵的理解
- 极大似然估计(含先验概率解释)
- 贝叶斯决策理论与贝叶斯分类器
– 详见[西瓜书] - 机器学习:核函数(通俗)
- 机器学习:核函数(严谨)
- 机器学习中的损失函数 (着重比较:hinge loss vs softmax loss)
- 数据预处理方法,如one-hot
待验证
深度学习
机器学习术语
数据集 | dataset |
---|---|
instance/sample | 样本/示例 |
dimensionality | 维数 |
training | 从数据中学得模型的过程 |
training data | 训练过程中使用的数据 |
training sample | 训练数据中的每个样本 |
training set | 训练样本组成的集合 |
learning algorithm | 在计算机上从数据中产生模型(model)的算法 |
model | 模型又称学习器,学习算法在给定数据和参数空间上的实例化 |
model selection | 模型选择,选择哪种算法和参数配置 |