embedded electronic systems for AI/ML 笔记第三篇

无监督学习

为什么?

有时没有好的先验标签(priori labels):数据聚类(clustering of data)
有时想根据数据集的属性(property)来简化模型:dimensionality reduction(降低维度)

聚类(clustering)

有时数据自然形成聚类,假定特征是连续的,欧几里得距离(Euclidean distance)是相似性的一种测量方法。假定这里有K个类别,那么如何去设定一个基准点(datum)到一个类中呢?

K-means clustering

前提假设:每个聚类中的点靠近聚类中心
若知道聚类,可计算平均值,反之亦然。
从随机开始,两者之间进行迭代(iterate)

工作原理

一种坐标下降(coordinate descent)的形式:先给定平均值(means)优化分配值assignment,再给定分配值assignment优化平均值。
实际上因为没有多项式算法(no polynomial algorithm)找到全局最小值,所以基本问题还是多个局部最小值。
所以每一次的迭代都会收敛到一个局部最小值,我们可以尝试多种随机启动,就比如神经网络。

维度降低(Dimensionality reduction)

有时候我们数据有好多特征而我们不确定哪些特征是重要的,我们可以使用正则化使得一些特征的系数为0,也可以寻找相关变量(correlated variables),不用管目标值(target)是什么。
作用:维度降低可以提高训练速度,通过减少过拟合来预测质量(prediction quality)。
既可以是线性的也可以是非线性的。

主要成分的分析(principal component analysis)

基于数据空间特征向量的线性降维算法:
投影(projection)在一个子空间:对于原空间的每个点xi,找到属于子空间的距离xi最近的点xi’,μ 是 xi 的平均值。

如何评价子空间的好坏

计算所有点距离子空间的平均距离,越小越好。
映射在子空间的点越分散越好。
两个参考标准是:
最小化映射误差或者重构误差。
最大化映射向量的方差。

怎么学习主要成分

用自动编码器(Autoencoder),它是一个用于训练从x预测x的神经网络。
为了使这项任务不那么微不足道,隐蔽层的神经元数量要小于特征的数量。
两层自动编码器简化学习主要成分。
W1 = QT
W2 = Q
更深层次的网络(deeper network)能够学习非线性主要成分。
深度自动解码器比有同等数量参数的PCA更有效更强大。

总结

无监督学习在数据空间中寻找“模式”(pattern)和“关联”(correlations)
无监督学习可以被用于:

  1. 数据预处理,减低维度并加快监督学习的收敛。
  2. 没有人工标签下发现模式并对数据进行预分类(pre-classify)。

使用线性空间上的线性映射,它可以在正交特征向量的子集上进行投影。
自动编码器将这一原理(无监督学习)推广到非线性映射,就像SVM将线性分离概括为类,而神经网络概括了SVM。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值