基于决策树的神经网络规则提取

本文探讨了决策树及神经网络如何生成规则,并详细解释了如何从决策树中提取规则,以及神经网络如何映射输入到输出的过程。此外,还讨论了离散值的分类点确定方法以及规则合并的技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是规则

就是IF…THEN…
eg.IF age=youth AND student=yes THEN buys_computer=yes

决策树->规则

参考https://blog.csdn.net/DQ_DM/article/details/38345753

如何从决策树中提取规则?
对于一个决策树,有多少叶子节点就可以提取多少规则。从根结点到叶子节点自然形成一条规则
在这里插入图片描述

决策树生成:ID3和C4.5算法

看https://blog.csdn.net/lt1103725556/article/details/121808597?spm=1001.2014.3001.5501
总而言之,一个样本:有特征,有结果
算法根据多个样本,选择依次使用(或者不使用)哪个特征作为决策分支,叶子节点为结果,使得样本通过这个树得到的结果的精度尽量高。

神经网络生成决策树

在这里插入图片描述

最终生成的规则如上图所示,相当于输入->输出的映射规则
对于一层神经元,根据输

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值