yolov5的模型训练及其图片标注

大家好,本文为大家讲解的是yolov5的模型训练!

一、yolov5的下载、安装及其环境配置

yolov5的下载、安装及其环境配置可以参考“https://blog.csdn.net/qq_43078154/article/details/119865421?spm=1001.2014.3001.5501”这篇文章。

二、准备数据集并标注
1.在yolov5项目下的data文件夹下创建一个images文件夹存放需要标注的图片,在创建一个dataset文件夹存放已经标注了的图片

2.打开Anaconda命令提示符

3.打开标注工具labelimg
4.打开labelimg开始进行标注

5.关闭labelimg后,会出现对应的".xml"文件

三、数据预处理与源代码修改

接下来需要对标注好的数据进行预处理操作,首先在工程目录文件下新建split.py程序

split.py的具体代码如下所示:

import os
import random
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--xml_path', default='data/dataset', type=str, help='input xml label path')
parser.add_argument('--txt_path', default='data/labels', type=str, help='output txt label path')
opt = parser.parse_args()
trainval_percent = 1.0
train_percent = 0.8
xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
if not os.path.exists(txtsavepath):
    os.makedirs(txtsavepath)
num = len(total_xml)
list_index = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list_index, tv)
train = random.sample(trainval, tr)
file_trainval = open(txtsavepath + '/trainval.txt', 'w')
file_test = open(txtsavepath + '/test.txt', 'w')
file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')
for i in list_index:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        file_trainval.write(name)
        if i in train:
            file_train.write(name)
        else:
            file_val.write(name)
    else:
        file_test.write(name)
file_trainval.close()
file_train.close()
file_val.close()
file_test.close()

然后运行此代码,运行结果如下图所示:

然后以同样的方式再创建xml_to_txt.py文件并运行

 xml_to_txt.py代码如下:

import xml.etree.ElementTree as ET
from tqdm import tqdm
import os
from os import getcwd

sets = ['train', 'val', 'test']
classes = ['dog']  # 这里改为你要训练的标签,否则会报错。比如你要识别“hand”,那这里就改为hand


def convert(size, box):
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = (box[0] + box[1]) / 2.0 - 1
    y = (box[2] + box[3]) / 2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return x, y, w, h


def convert_annotation(image_id):
    # try:
    in_file = open('data/dataset/%s.xml' % (image_id), encoding='utf-8')
    out_file = open('data/labels/%s.txt' % (image_id), 'w', encoding='utf-8')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        b1, b2, b3, b4 = b
        # 标注越界修正
        if b2 > w:
            b2 = w
        if b4 > h:
            b4 = h
        b = (b1, b2, b3, b4)
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " +
                       " ".join([str(a) for a in bb]) + '\n')


# except Exception as e:
#     print(e, image_id)

wd = getcwd()
for image_set in sets:
    if not os.path.exists('data/labels/'):
        os.makedirs('data/labels/')
    image_ids = open('data/labels/%s.txt' %
                     (image_set)).read().strip().split()
    list_file = open('data/%s.txt' % (image_set), 'w')
    for image_id in tqdm(image_ids):
        list_file.write('data/images/%s.jpg\n' % (image_id))
        convert_annotation(image_id)
    list_file.close()

运行文件后,会出现与“.xml”对应的“txt”文件

接下来在data文件夹中新建myvoc.yaml文件

 这里一定要注意一点在train,val,nc,names冒号后面一定要空一格,要判断正确不正确,只要看这几个关键字有没有变颜色,要是变颜色那就说明是正确的。

最后再修改models下的yolov5s.yaml文件

创建一个weights文件夹,将yolov5s.pt文件放到weights文件夹下

四、训练自己的数据

打开Anaconda并修改路径

使用python train.py --epoch 300 --batch 4 --data ./data/myvoc.yaml --cfg ./models/yolov5s.yaml --weight ./weights/yolov5s.pt --workers 0命令进行训练

本文到这里就结束了,谢谢观看!

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值