python机器学习库keras——CNN卷积神经网络人脸识别

版权声明:本文为博主原创文章,转载请注明来源。开发合作联系82548597@qq.com https://blog.csdn.net/luanpeng825485697/article/details/80144300

全栈工程师开发手册 (作者:栾鹏)

python教程全解

github地址:https://github.com/626626cdllp/kears/tree/master/Face_Recognition

图片来源

这里写图片描述

图片中共40个人,每人10张图片,每张图片高57,宽47。共400张图片。

读取图片的py文件

import numpy
import pandas
from PIL import Image
from keras import backend as K
from keras.utils import np_utils


"""
加载图像数据的函数,dataset_path即图像olivettifaces的路径
加载olivettifaces后,划分为train_data,valid_data,test_data三个数据集
函数返回train_data,valid_data,test_data以及对应的label
"""

# 400个样本,40个人,每人10张样本图。每张样本图高57*宽47,需要2679个像素点。每个像素点做了归一化处理
def load_data(dataset_path):
    img = Image.open(dataset_path)
    img_ndarray = numpy.asarray(img, dtype='float64') / 256
    print(img_ndarray.shape)
    faces = numpy.empty((400,57,47))
    for row in range(20):
        for column in range(20):
            faces[row * 20 + column] = img_ndarray[row * 57:(row + 1) * 57, column * 47:(column + 1) * 47]
    # 设置400个样本图的标签
    label = numpy.empty(400)
    for i in range(40):
        label[i * 10:i * 10 + 10] = i
    label = label.astype(numpy.int)
    label = np_utils.to_categorical(label, 40)  # 将40分类类标号转化为one-hot编码

    # 分成训练集、验证集、测试集,大小如下
    train_data = numpy.empty((320, 57,47))   # 320个训练样本
    train_label = numpy.empty((320,40))   # 320个训练样本,每个样本40个输出概率
    valid_data = numpy.empty((40, 57,47))   # 40个验证样本
    valid_label = numpy.empty((40,40))   # 40个验证样本,每个样本40个输出概率
    test_data = numpy.empty((40, 57,47))   # 40个测试样本
    test_label = numpy.empty((40,40))  # 40个测试样本,每个样本40个输出概率

    for i in range(40):
        train_data[i * 8:i * 8 + 8] = faces[i * 10:i * 10 + 8]
        train_label[i * 8:i * 8 + 8] = label[i * 10:i * 10 + 8]
        valid_data[i] = faces[i * 10 + 8]
        valid_label[i] = label[i * 10 + 8]
        test_data[i] = faces[i * 10 + 9]
        test_label[i] = label[i * 10 + 9]

    return [(train_data, train_label), (valid_data, valid_label),(test_data, test_label)]


if __name__ == '__main__':
    [(train_data, train_label), (valid_data, valid_label), (test_data, test_label)] = load_data('olivettifaces.gif')
    oneimg = train_data[0]*256
    print(oneimg)
    im = Image.fromarray(oneimg)
    im.show()

CNN人脸识别代码

import numpy as np
np.random.seed(1337)  # for reproducibility
from keras.models import Sequential
from keras.layers import Dense, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D,AveragePooling2D
from PIL import Image
import FaceData
# 全局变量  
batch_size = 128  # 批处理样本数量
nb_classes = 40  # 分类数目
epochs = 600  # 迭代次数
img_rows, img_cols = 57, 47  # 输入图片样本的宽高
nb_filters = 32  # 卷积核的个数
pool_size = (2, 2)  # 池化层的大小
kernel_size = (5, 5)  # 卷积核的大小
input_shape = (img_rows, img_cols,1)  # 输入图片的维度

[(X_train, Y_train), (X_valid, Y_valid),(X_test, Y_test)] =FaceData.load_data('olivettifaces.gif')

X_train=X_train[:,:,:,np.newaxis]  # 添加一个维度,代表图片通道。这样数据集共4个维度,样本个数、宽度、高度、通道数
X_valid=X_valid[:,:,:,np.newaxis]  # 添加一个维度,代表图片通道。这样数据集共4个维度,样本个数、宽度、高度、通道数
X_test=X_test[:,:,:,np.newaxis]  # 添加一个维度,代表图片通道。这样数据集共4个维度,样本个数、宽度、高度、通道数

print('样本数据集的维度:', X_train.shape,Y_train.shape)
print('测试数据集的维度:', X_test.shape,Y_test.shape)






# 构建模型
model = Sequential()
model.add(Conv2D(6,kernel_size,input_shape=input_shape,strides=1))  # 卷积层1
model.add(AveragePooling2D(pool_size=pool_size,strides=2))  # 池化层
model.add(Conv2D(12,kernel_size,strides=1))  # 卷积层2
model.add(AveragePooling2D(pool_size=pool_size,strides=2))  # 池化层
model.add(Flatten())  # 拉成一维数据
model.add(Dense(nb_classes))  # 全连接层2
model.add(Activation('sigmoid'))  # sigmoid评分

# 编译模型
model.compile(loss='categorical_crossentropy',optimizer='adadelta',metrics=['accuracy'])
# 训练模型
model.fit(X_train, Y_train, batch_size=batch_size, epochs=epochs,verbose=1, validation_data=(X_test, Y_test))
# 评估模型
score = model.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])



y_pred = model.predict(X_test)
y_pred = y_pred.argmax(axis=1)   # 获取概率最大的分类,获取每行最大值所在的列
for i in range(len(y_pred)):
    oneimg = X_test[i,:,:,0]*256
    im = Image.fromarray(oneimg)
    im.show()
    print('第%d个人识别为第%d个人'%(i,y_pred[i]))

600次迭代,正确率90%,当然只用了10个样本进行测试,所以准确率不是特别准确。

展开阅读全文

没有更多推荐了,返回首页