[QMT量化交易小白入门]-十二、QMT回测龙头打首板和连板的策略

本专栏主要是介绍QMT的基础用法,常见函数,写策略的方法,也会分享一些量化交易的思路,大概会写100篇左右。
QMT的相关资料较少,在使用过程中不断的摸索,遇到了一些问题,记录下来和大家一起沟通,共同进步,自己淋过雨了,希望大家都有一把伞。

相关阅读

小白也能做量化:零门槛QMT、Ptrade免费送
量化交易入门:如何在QMT中配置Python环境,安装第三方依赖包
量化交易策略:多因子选股结合布林带择时


A股由于涨跌停板的限制,反而提供了一些套利机会,游资大佬很多都是通过打板起家。这里采用QMT回测了龙头打首板和连板的策略,我将详细解释每行代码的作用,帮助读者理解这一策略。

1. 导入必要的库

import pandas as pd
### 关于 Ptrade 平台实现打板策略的代码 在Ptrade平台上构建打板策略涉及到几个核心组件:初始化设置、数据获取以及交易逻辑执行。下面提供了一个简化版的Python代码示例来展示如何利用Ptrade API创建一个基本的打板策略。 #### 初始化函数 `initialize` 此部分用于定义全局变量并配置初始参数,比如设定目标证券列表一些必要的开关条件等。 ```python def initialize(context): context.stock = '600570.SS' # 设定要操作的具体股票代码 set_universe([context.stock]) # 配置其他可能需要用到的全局属性 context.buy_signal = False context.sell_signal = True log.info("Initialization completed.") ``` #### 数据处理与信号生成 `handle_data` 该方法会在每一个时间周期被调用一次,在这里可以加入具体的买卖判断逻辑。对于打板策略而言,则需特别注意涨停价附近的成交量变化情况作为入场时机的选择依据之一。 ```python def handle_data(context, data): current_price = data.current(context.stock, 'price') last_close = data.history(context.stock, bar_count=1, frequency="1d", fields=['close'])['close'][0] # 判断是否达到涨停状态 (假设A股市场涨跌幅限制为10%) limit_up = round(last_close * 1.1, 2) if not context.buy_signal and abs(current_price - limit_up) < 0.01: # 当前价格接近或等于涨停价位时发出买入指令 order_target_percent(context.stock, 1) context.buy_signal = True log.info(f"Bought {context.stock} at market price near the upper limit.") elif context.buy_signal and context.sell_signal: # 如果已经持有仓位并且满足卖出条件则平仓离场 order_target_percent(context.stock, 0) context.sell_signal = False log.info(f"Sell all shares of {context.stock}.") ``` 上述代码片段展示了基于Ptrade框架下的一种简单形式的打板策略实现方式[^1]。需要注意的是实际应用过程中还需要考虑更多因素如手续费成本控制、风险管理资金分配等问题;此外也建议结合具体市场的特点调整相应的阈值判定标准以提高模型的有效性稳定性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

python自动化工具

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值