[QMT量化交易小白入门]-四十九、中小盘策略是否还有未来,市值再平衡策略,年化收益率124%

本专栏主要是介绍QMT的基础用法,常见函数,写策略的方法,也会分享一些量化交易的思路,大概会写100篇左右。
QMT的相关资料较少,在使用过程中不断的摸索,遇到了一些问题,记录下来和大家一起沟通,共同进步。

相关阅读

小白也能做量化:零门槛QMT、Ptrade免费送
量化交易入门:如何在QMT中配置Python环境,安装第三方依赖包
年化收益达到了70%,增加了动态仓位权重调整后的全球核心资产轮动策略(含python代码解析)


最近有球友在建议是否有中小盘的策略, 在2005-2015年的黄金期,A股市场采用最小市值前20股票组合年化收益高达48.26%,10年创造6379%的惊人回报,但是注册制改革后,壳价值蒸发,部分​流动性

QMT(Quantum Trader)是由国泰君安证券推出的一款专业的量化交易平台,支持用户编写基于Python或其他语言的股票、期货等金融产品的量化交易策略。但是需要注意的是,**QMT标准版本身并不提供具体的股票量化交易策略源代码**,而是通过其API接口让用户自行开发。 以下是一个简单的关于如何构建股票量化交易策略的基本思路,并附上一段伪代码示例: ### 股票量化交易策略简介 #### 策略类型 常见的股票量化交易策略包括但不限于: 1. **均线突破策略**:当短期均线上穿长期均线时买入;下穿时卖出。 2. **RSI超买超卖策略**:利用技术指标RSI判断市场是否进入超买或超卖区域。 3. **网格交易策略**:设定价格区间,在低价位买入高价卖出,赚取价差收益。 #### 示例 - 均线突破策略 假设我们希望实现一个简单均线交叉的交易策略,核心思想如下: - 计算短期移动平均线 (如5日MA) 和长期移动平均线 (如60日MA); - 当短周期MA大于长周期MA时买入; - 反之则清仓并退出所有持仓。 ```python import pandas as pd from qmt import * # 初始回测环境 def init(context): context.stock = 'SHSE.600519' # 设置目标股票为贵州茅台 context.short_period = 5 # 定义短期均线窗口期数 context.long_period = 60 # 长期均线窗口期数 # 每个交易日运行一次 def handle_data(context, data): stock_price = get_history('close', symbol=context.stock) short_ma = stock_price[-context.short_period:].mean() long_ma = stock_price[-context.long_period:].mean() current_position = context.portfolio.positions.get(context.stock, None) if short_ma > long_ma and not current_position: order_target_value(context.stock, context.portfolio.cash * 0.8) # 全仓买入 elif short_ma < long_ma and current_position: order_target(context.stock, 0) # 清空仓位 if __name__ == '__main__': run(strategy=handle_data, initialize=init, start_date='2022-01-01') ``` 上述代码仅为简版本,实际应用还需要考虑手续费、滑点成本等因素。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

python自动化工具

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值