椭圆曲线密码体制
椭圆曲线密码体制
椭圆曲线密码学(ECC)使用较短的操作数,可提供与RSA或离散对数系统同等的安全等级。ECC基于推广的离散对数问题,因此,DL协议(比如Diffie-Hellman密钥交换)也可以使用椭圆曲线实现。
1. 椭圆曲线的计算方式
简单介绍一下椭圆曲线的数学概念。ECC基于推广的离散对数问题,因此我们需要做的是找到一个可以构建密码体制的循环群。为了让它拥有很好的单向属性,还要求群内的DL问题在计算时足够难。
1.1 椭圆曲线的定义
我们可以从多项式等式中得到某种类型的曲线,如
a x 2 + b y 2 = c ax^2+by^2=c ax2+by2=c
可以得到如下所示的曲线:
这里的曲线指该方程的解对应的点 ( x , y ) (x,y) (x,y)的集合。
椭圆曲线是一种特殊的多项式方程,它是在有限域内的曲线,它的定义为:
Z p ( p > 3 ) Z_p(p>3) Zp(p>3)上的椭圆曲线指满足以下条件的所有对 ( x , y ) ∈ Z p (x,y)\in\Z_p (x,y)∈Zp的集合
y 2 ≡ x 3 + a x + b m o d p y^2\equiv x^3+ax+b\quad mod\quad p y2≡x3+ax+bmodp
以及一个无穷大的虚数点 ϱ \varrho ϱ,其中 a , b ∈ Z p a,b\in Z_p a,b∈Zp,并且满足条件 4 a 3 + 27 b 2 ≠ 0 m o d p 4a^3+27b^2\ne 0\quad mod \quad p 4a3+27b2=0modp。
椭圆曲线的定义要求该曲线是非奇异的,即该曲线的图不会自我相交或没有顶点,可由曲线的判别式 − 16 ( 4 a 3 + 27 b 2 ) ≠ 0 -16(4a^3+27b^2)\ne0 −16(4a3+27b2)=0保证。
1.2 椭圆曲线上的群操作
以实数上的椭圆曲线 y 2 = x 3 − 3 x + 3 y^2=x^3-3x+3 y2=x3−3x+3 为例,可得到如下所示的曲线:
假设用+
表示群操作,令 P = ( x 1 , y 1 ) , Q = ( x 2 , y 2 ) P=(x_1,y1),Q=(x_2,y_2) P=(x1,y1),Q=(x2,y2),则第三个点R的坐标为:
P + Q = R P+Q=R P+Q=R
( x 1 , y 1 ) + ( x 2 , y 2 ) = ( x 3 , y