【CloudCompare教程】008:基于点云的三维模型重建(泊松重建)

本文详细介绍了使用CloudCompare进行基于点云的三维模型重建过程,包括加载点云、计算法向量、泊松建模以及如何利用输出密度优化重建结果。通过计算法向量和应用PoissonRecon算法,实现从点云到三维模型的转换,展示了不同法向量设置下的建模效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文讲述基于点云的三维模型重建方法,PoissonRecon是“Poisson Surface Reconstruction”的缩写,它是由约翰霍普金斯大学的Misha Kazhdan47提出的三角形网格生成算法的简单接口。

一、加载点云

加载兔子点云,如下图所示:

在这里插入图片描述

二、计算法向量

在三维模型构建之前,应先计算法向量,否则会有以下提示:点云必须具有法向量。

在这里插入图片描述

选中点云图层,点击【编辑】→【法向量】→【计算】:

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刘一哥GIS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值