tensorflow模型压缩

本文介绍了如何使用TensorFlow进行模型压缩,包括下载源码并使用bazel编译,然后通过transform_graph工具进行压缩,利用fold_constants、fold_batch_norms、fold_old_batch_norms、quantize_weights和strip_unused_nodes等选项来优化模型,最后提到了quantize_graph的压缩方法及其对模型效果的影响。
摘要由CSDN通过智能技术生成

1、下载tensorflow源码,并用bazel编译

git clone https://github.com/tensorflow/tensorflow.git
bazel build tensorflow/tools/graph_transforms:transform_graph
bazel build tensorflow/tools/quantization:quantize_graph

2、transform_graph压缩

pb_in="model_224.pb"
pb_out="model_transgraph.pb"
graph_trans=~/Experiment/tensorflow/bazel-bin/tensorflow/tools/graph_transforms/transform_graph
$graph_trans --in_graph=$pb_in --out_graph=$pb_out --inputs="input_1" --outputs="output_0" --transforms="
    add_default_attributes
    fold_constants(ignore_errors=true)
    fold_batch_norms
    fold_old_batch_norms
    quantize_weights
    quantize_nodes
    strip_unused_nodes
    sort_by_execution_order"

各选项含义:

fold_constants:查找模型中始终为常量的表达式,并用常量替换他们

fold_batch_norms:训练过程中使用批量标准化时可以优化在Conv2D或者MatMul之后引入的Mul

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值