一、前言
最近打算出一个背包问题的专栏,详细介绍一下常见的几种不同类型的背包问题及其解题思路和方法,欢迎各位留言探讨。
二、什么是背包问题?
背包问题是动态规划中的一个分支,其目标是在给定的一组物品中选择一些物品放入背包,使得在满足背包容量限制的情况下,所选物品的总价值最大化或总重量最小化。背包问题大致可以分为9类,本章讲解的是01背包问题。
三、01背包
3.1 问题描述
有n个物品和一个容量为capacity的背包,每种物品只有一件,他们的体积分别为weights[i](0<=i<n),价值分别为values[i](0<=i<n),求将哪些物品装入背包可使价值总和最大?
3.2 解体思路
3.2.1 确定状态变量(函数)
最大价值是物品数量i与背包容量j的函数,设dp[i][j]表示从前i件物品中进行选择,放入容量为j的背包所能获得的最大价值
3.2.2 确定状态转移方程(递推关系)
对于第i个物品(第1个物品体积为weights[0],第i个物品体积为weights[i-1])的选择情况如下:
- 如果当前背包剩余容量j<weights[i-1],则无法将该物品装入背包,此时最大价值与从前i-1个物品选择,放入容量为j的背包所能获得的最大价值相同
dp[i][j] = dp[i-1][j]
- 如果当前背包剩余容量j>=weights[i-1],则能放入第i件物品,但是需要判断放入该物品与不放入时哪种情况所能取到的价值最大。
- 2.1 如果第i件物品不放入背包
dp[i][j] = dp[i-1][j]
- 2.2.如果第i件物品放入背包,背包剩余容量为j-weights[i-1],要使总价值最大,相当于从前i-1个物品中进行选择,放入容量为j-weights[i-1]的背包的最大价值再加上第i件物品的价值values[i-1]
dp[i][j] = dp[i-1][j-weights[i-1]] + values[i-1]
- 2.3.所以当j>=weights[i-1]时,我们只需要选择两种情况下的最大值即可
dp[i][j] = max(dp[i-1][j], dp[i-1][j-weights[i-1]] + values[i-1])
- 综上所述,状态转移方程如下:
1.j<weights[i-1]: dp[i][j] = dp[i-1][j] 2.j>=weights[i-1] dp[i][j] = max(dp[i-1][j], dp[i-1][j-weights[i-1]] + values[i-1])
3.2.3 确定边界条件
- 当背包容量为0时,无法放入任何物品到背包中,总价值为0,即dp[i][0]=0 (0<=i<=n,n为物品总数量)
- 当不放入任何物品到背包中时,总价值也为0,即dp[0][j]=0(0<=j<=capacity,capacity为背包最大容量)
3.2.4 代码示例
/**
* 背包问题-背包9讲
*/
public class KnapsackQuestion {
/**
* 01背包
*
* @param weights 存储n件物品重量的数组,weights[i-1]表示第i件物品的重量(下标从0开始)
* @param values 存储n件物品价值的数组,values[i-1]表示第i件物品的价值
* @param capacity 背包的容量
* @return 从n件物品中进行选择,放入容量为capacity的背包中所能取得的最大价值
*/
public int knapsack01(int[] weights, int[] values, int capacity) {
// dp[i][j]表示从前i件物品中选择,放入容量为j的背包的最大价值
int n = weights.length;
int[][] dp = new int[n + 1][capacity + 1];
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= capacity; j++) {
if (j >= weights[i - 1]) {
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weights[i - 1]] + values[i - 1]);
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
return dp[n][capacity];
}
}
3.2.5 空间优化-滚动数组
从上面的代码中不难发现,外层循环遍历到第i次时,只用到了第i-1次遍历后容量小于等于j的dp元素值,所以可以通过将二维数组降维为一维数组对空间进行优化,设dp[j]为从前i个物品中进行选择,放入容量为j的背包所能获得的最大价值,dp[i][j]可以看作是外层第i次循环所获得的dp[j],dp[i-1][j]可看作是外层第i-1(即上一次)循环所获得的dp[j],状态转移关系如下:
1.j<weights[i-1]:
第i次循环得到的dp[j] = 上一次循环得到的dp[j]
2.j>=weights[i-1]
第i次循环得到的dp[j] = max(上一次循环得到的dp[j], 上一次循环得到的dp[j-weights[i-1]] + values[i-1])
如何保留上一次循环时的dp值?以dp[j]=dp[j-weights[i-1]]为例,如果顺序遍历dp数组并更新当前值,那么在遍历到dp[j]之前就已经更新了dp[j-weights[i-1]]了,也就是说第i次循环得到的dp[j]实际上是由第i次循环得到的dp[j-weights[i-1]]转移得到而不是上一次循环得到的dp[j-weights[i-1]]转移而来,故不能顺序更新dp数组,而应该逆序更新dp数组。
仍以dp[j]=dp[j-weights[i-1]]为例,如果逆序更新,则遍历到dp[j]时dp[j-weights[i-1]]是没有被本次的内层循环更新的,dp[j-weights[i-1]]所保留的还是外层的上一次循环得到的值,满足要求
for j=capacity; j >= weights[i-1]; j--
dp[j] = dp[j-weights[i-1]]
代码示例如下:
/**
* 背包问题-背包9讲
*/
public class KnapsackQuestion {
/**
* 01背包-滚动数组
* 时间复杂度:O(MN) M表示背包的容量,N表示物品的数量
* 空间复杂度:O(M) M表示背包的容量
*
* @param weights 存储n件物品重量的数组,weights[i-1]表示第i件物品的重量(下标从0开始)
* @param values 存储n件物品价值的数组,values[i-1]表示第i件物品的价值
* @param capacity 背包的容量
* @return 从n件物品中进行选择,放入容量为capacity的背包中所能取得的最大价值
*/
public int knapsack01WithRollingArray(int[] weights, int[] values, int capacity) {
int n = weights.length;
int[] dp = new int[capacity + 1];
for (int i = 1; i <= n; i++) {
for (int j = capacity; j >= weights[i - 1]; j--) {
dp[j] = Math.max(dp[j], dp[j - weights[i - 1]] + values[i - 1]);
}
}
return dp[capacity];
}
}
四、结尾
最近会不定期的更新一系列内容,如果有疑问欢迎评论区留言探讨,感兴趣的小伙伴可以关注我的个人微信公众号,今后会陆续分享各种编程开发技术、业务场景代码设计及优化实践、问题排查解决案例、各类后端技术组件实战及原理、开发工具使用技巧及各类面试题等内容。