背包9讲系列1-01背包问题

一、前言

最近打算出一个背包问题的专栏,详细介绍一下常见的几种不同类型的背包问题及其解题思路和方法,欢迎各位留言探讨。

二、什么是背包问题?

背包问题是动态规划中的一个分支,其目标是在给定的一组物品中选择一些物品放入背包,使得在满足背包容量限制的情况下,所选物品的总价值最大化或总重量最小化。背包问题大致可以分为9类,本章讲解的是01背包问题。

三、01背包

3.1 问题描述

有n个物品和一个容量为capacity的背包,每种物品只有一件,他们的体积分别为weights[i](0<=i<n),价值分别为values[i](0<=i<n),求将哪些物品装入背包可使价值总和最大?

3.2 解体思路

3.2.1 确定状态变量(函数)

最大价值是物品数量i与背包容量j的函数,设dp[i][j]表示从前i件物品中进行选择,放入容量为j的背包所能获得的最大价值

3.2.2 确定状态转移方程(递推关系)

对于第i个物品(第1个物品体积为weights[0],第i个物品体积为weights[i-1])的选择情况如下:

  1. 如果当前背包剩余容量j<weights[i-1],则无法将该物品装入背包,此时最大价值与从前i-1个物品选择,放入容量为j的背包所能获得的最大价值相同
    dp[i][j] = dp[i-1][j]
    
  2. 如果当前背包剩余容量j>=weights[i-1],则能放入第i件物品,但是需要判断放入该物品与不放入时哪种情况所能取到的价值最大。
  • 2.1 如果第i件物品不放入背包
    dp[i][j] = dp[i-1][j]
    
  • 2.2.如果第i件物品放入背包,背包剩余容量为j-weights[i-1],要使总价值最大,相当于从前i-1个物品中进行选择,放入容量为j-weights[i]的背包的最大价值再加上第i件物品的价值values[i-1]
    dp[i][j] = dp[i-1][j-weights[i-1]] + values[i-1]
    
  • 2.3.所以当j>=weights[i-1]时,我们只需要选择两种情况下的最大值即可
    dp[i][j] = max(dp[i-1][j], dp[i-1][j-weights[i-1]] + values[i-1])
    
  1. 综上所述,状态转移方程如下:
    1.j<weights[i-1]: 
    	dp[i][j] = dp[i-1][j]
    2.j>=weights[i-1]
    	dp[i][j] = max(dp[i-1][j], dp[i-1][j-weights[i-1]] + values[i-1])
    

3.2.3 确定边界条件

  • 当背包容量为0时,无法放入任何物品到背包中,总价值为0,即dp[i][0]=0 (0<=i<=n)
  • 当不放入任何物品到背包中时,总价值也为0,即dp[0][j]=0(0<=j<=n)

3.2.4 代码示例

/**
 * 背包问题-背包9讲
 */
public class KnapsackQuestion {
    /**
     * 01背包
     *
     * @param weights  存储n件物品重量的数组,weights[i-1]表示第i件物品的重量(下标从0开始)
     * @param values   存储n件物品价值的数组,values[i-1]表示第i件物品的价值
     * @param capacity 背包的容量
     * @return 从n件物品中进行选择,放入容量为capacity的背包中所能取得的最大价值
     */
    public int knapsack01(int[] weights, int[] values, int capacity) {
        // dp[i][j]表示从前i件物品中选择,放入容量为j的背包的最大价值
        int n = weights.length;
        int[][] dp = new int[n + 1][capacity + 1];
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= capacity; j++) {
                if (j >= weights[i - 1]) {
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weights[i - 1]] + values[i - 1]);
                } else {
                    dp[i][j] = dp[i - 1][j];
                }
            }
        }
        return dp[n][capacity];
    }
}

3.2.5 空间优化-滚动数组

从上面的代码中不难发现,外层循环遍历到第i次时,只用到了第i-1次遍历后容量小于等于j的dp元素值,所以可以通过将二维数组降维为一维数组对空间进行优化,设dp[j]为从前i个物品中进行选择,放入容量为j的背包所能获得的最大价值,dp[i][j]可以看作是外层第i次循环所获得的dp[j],dp[i-1][j]可看作是外层第i-1(即上一次)循环所获得的dp[j],状态转移关系如下:

1.j<weights[i-1]: 
	第i次循环得到的dp[j] = 上一次循环得到的dp[j]
2.j>=weights[i-1]
	第i次循环得到的dp[j] = max(上一次循环得到的dp[j], 上一次循环得到的dp[j-weights[i-1]] + values[i-1])

如何保留上一次循环时的dp值?以dp[j]=dp[j-weights[i-1]]为例,如果顺序遍历dp数组并更新当前值,那么在遍历到dp[j]之前就已经更新了dp[j-weights[i-1]]了,也就是说第i次循环得到的dp[j]实际上是由第i次循环得到的dp[j-weights[i-1]]转移得到而不是上一次循环得到的dp[j-weights[i-1]]转移而来,故不能顺序更新dp数组,而应该逆序更新dp数组。
仍以dp[j]=dp[j-weights[i-1]]为例,如果逆序更新,则遍历到dp[j]时dp[j-weights[i-1]]是没有被本次的内层循环更新的,dp[j-weights[i-1]]所保留的还是外层的上一次循环得到的值,满足要求

for j=capacity; j >= weights[i-1]; j--
	dp[j] = dp[j-weights[i-1]]

代码示例如下:

/**
 * 背包问题-背包9讲
 */
public class KnapsackQuestion {
    /**
     * 01背包-滚动数组
     * 时间复杂度:O(MN) M表示背包的容量,N表示物品的数量
     * 空间复杂度:O(M) M表示背包的容量
     *
     * @param weights  存储n件物品重量的数组,weights[i-1]表示第i件物品的重量(下标从0开始)
     * @param values   存储n件物品价值的数组,values[i-1]表示第i件物品的价值
     * @param capacity 背包的容量
     * @return 从n件物品中进行选择,放入容量为capacity的背包中所能取得的最大价值
     */
    public int knapsack01WithRollingArray(int[] weights, int[] values, int capacity) {
        int n = weights.length;
        int[] dp = new int[capacity + 1];
        for (int i = 1; i <= n; i++) {
            for (int j = capacity; j >= weights[i - 1]; j--) {
                dp[j] = Math.max(dp[j], dp[j - weights[i - 1]] + values[i - 1]);
            }
        }
        return dp[capacity];
    }
}

四、结尾

最近会不定期的更新一系列内容,如果有疑问欢迎评论区留言探讨,感兴趣的小伙伴可以关注我的个人微信公众号,今后会陆续分享各种编程开发技术、业务场景代码设计及优化实践、问题排查解决案例、各类后端技术组件实战及原理、开发工具使用技巧及各类面试题等内容。

天逸技谈

  • 9
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值