root@autodl-container-c10245bd8d-ec01c20f:~/CGFormer-main# pip install mmcv
Looking in indexes: http://mirrors.aliyun.com/pypi/simple
Collecting mmcv
Using cached http://mirrors.aliyun.com/pypi/packages/e9/a2/57a733e7e84985a8a0e3101dfb8170fc9db92435c16afad253069ae3f9df/mmcv-2.2.0.tar.gz (479 kB)
Preparing metadata (setup.py) ... error
error: subprocess-exited-with-error
× python setup.py egg_info did not run successfully.
│ exit code: 1
╰─> [10 lines of output]
/tmp/pip-install-fegourma/mmcv_606fa99d541d49aab05070bc597c1f1f/setup.py:5: DeprecationWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html
from pkg_resources import DistributionNotFound, get_distribution, parse_version
Traceback (most recent call last):
File "<string>", line 2, in <module>
File "<pip-setuptools-caller>", line 34, in <module>
File "/tmp/pip-install-fegourma/mmcv_606fa99d541d49aab05070bc597c1f1f/setup.py", line 19, in <module>
from torch.utils.cpp_extension import BuildExtension
File "/root/miniconda3/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 28, in <module>
from pkg_resources import packaging # type: ignore[attr-defined]
ImportError: cannot import name 'packaging' from 'pkg_resources' (/root/miniconda3/lib/python3.10/site-packages/pkg_resources/__init__.py)
[end of output]
note: This error originates from a subprocess, and is likely not a problem with pip.
error: metadata-generation-failed
× Encountered error while generating package metadata.
╰─> See above for output.
note: This is an issue with the package mentioned above, not pip.
hint: See above for details.
很大的可能是因为python版本和mmcv不兼容,此时可以参考下面的mmcv的官方安装文档
一般解决方案
pip install -U openmim
mim install mmcv
##有时安装成功之后会显示有些模块没有,是因为安装的是mmcv而不是mmcv-full
可以尝试安装mmcv-full解决
mim install mmcv-full
INSTALLATION
There are two versions of MMCV:
-
mmcv: comprehensive, with full features and various CUDA ops out of box. It takes longer time to build.
-
mmcv-lite: lite, without CUDA ops but all other features, similar to mmcv<1.0.0. It is useful when you do not need those CUDA ops.
警告
Do not install both versions in the same environment, otherwise you may encounter errors like ModuleNotFound
. You need to uninstall one before installing the other. Installing the full version is highly recommended if CUDA is avaliable
.
Install mmcv
Before installing mmcv, make sure that PyTorch has been successfully installed following the PyTorch official installation guide. This can be verified using the following command
python -c 'import torch;print(torch.__version__)'
If version information is output, then PyTorch is installed.
Install with mim (recommended)
mim is the package management tool for the OpenMMLab projects, which makes it easy to install mmcv
pip install -U openmim mim install mmcv
If you find that the above installation command does not use a pre-built package ending with .whl
but a source package ending with .tar.gz
, you may not have a pre-build package corresponding to the PyTorch or CUDA or mmcv version, in which case you can build mmcv from source.
Installation log using pre-built packages
Installation log using source packages
To install a specific version of mmcv, for example, mmcv version 2.0.0, you can use the following command
mim install mmcv==2.0.0
注解
If you would like to use opencv-python-headless
instead of opencv-python
, e.g., in a minimum container environment or servers without GUI, you can first install it before installing MMCV to skip the installation of opencv-python
.
Alternatively, if it takes too long to install a dependency library, you can specify the pypi source
mim install mmcv -i https://pypi.tuna.tsinghua.edu.cn/simple
You can run check_installation.py to check the installation of mmcv-full after running the installation commands.
Install with pip
Use the following command to check the version of CUDA and PyTorch
python -c 'import torch;print(torch.__version__);print(torch.version.cuda)'
Select the appropriate installation command depending on the type of system, CUDA version, PyTorch version, and MMCV version
LinuxWindowsmacOScuda 12.1cuda 11.8cuda 11.7cuda 11.6cuda 11.5cuda 11.3cuda 11.1cuda 11.0cuda 10.2cuda 10.1cuda 9.2cputorch 2.3.xtorch 2.2.xtorch 2.1.xmmcv 2.2.0
pip install mmcv==2.2.0 -f https://download.openmmlab.com/mmcv/dist/cu121/torch2.3/index.html
If you do not find a corresponding version in the dropdown box above, you probably do not have a pre-built package corresponding to the PyTorch or CUDA or mmcv version, at which point you can build mmcv from source.
注解
mmcv is only compiled on PyTorch 1.x.0 because the compatibility usually holds between 1.x.0 and 1.x.1. If your PyTorch version is 1.x.1, you can install mmcv compiled with PyTorch 1.x.0 and it usually works well. For example, if your PyTorch version is 1.8.1, you can feel free to choose 1.8.x.
注解
If you would like to use opencv-python-headless
instead of opencv-python
, e.g., in a minimum container environment or servers without GUI, you can first install it before installing MMCV to skip the installation of opencv-python
.
Alternatively, if it takes too long to install a dependency library, you can specify the pypi source
mim install mmcv -i https://pypi.tuna.tsinghua.edu.cn/simple
You can run check_inst安装allation.py to check the installation of mmcv after running the installation commands.
Using mmcv with Docker
Build with local repository
git clone https://github.com/open-mmlab/mmcv.git && cd mmcv docker build -t mmcv -f docker/release/Dockerfile .
Or build with remote repository
docker build -t mmcv https://github.com/open-mmlab/mmcv.git#main:docker/release
The Dockerfile installs latest released version of mmcv-full by default, but you can specify mmcv versions to install expected versions.
docker image build -t mmcv -f docker/release/Dockerfile --build-arg MMCV=2.0.0 .
If you also want to use other versions of PyTorch and CUDA, you can also pass them when building docker images.
An example to build an image with PyTorch 1.11 and CUDA 11.3.
docker build -t mmcv -f docker/release/Dockerfile \ --build-arg PYTORCH=1.11.0 \ --build-arg CUDA=11.3 \ --build-arg CUDNN=8 \ --build-arg MMCV=2.0.0 .
More available versions of PyTorch and CUDA can be found at dockerhub/pytorch.
Install mmcv-lite
If you need to use PyTorch-related modules, make sure PyTorch has been successfully installed in your environment by referring to the PyTorch official installation guide.
pip install mmcv-lite