半监督结点分类

3 半监督结点分类
我们已经介绍过了一个简单但是灵活的可在图上进行有效信息传播的模型f(X,A),现在我们可以回过头来看半监督结点分类的问题了。就像本文的介绍中所简要概述的那样,我们可以通过在数据集X和基础图结构的邻接矩阵A上调整来我们的模型f(X,A),我们可以放宽通常在基于图的半监督学习中做出的某些假设。邻接矩阵会包含数据集中无法表示的信息,例如例如引文网络中的文档之间的引用链接或知识图中的关系,我们希望在这种情况下这种设置会表现得很出色。整体的模型,就是用于半监督学习的多层GCN,如图1所示。
3.1 举例
下面,我们考虑一个基于图的对称邻接矩阵A(带有权重或未带权重的)来完成半监督结点分类的两层的GCN模型。我们首先在预处理步骤中计算
我们的正演模型采取了简单的形式:
图1:左侧:用于半监督结点分类的多层GCN的示意图描述,其中输入层中有C个输入通道,输出层中F个特征图谱。图结构(边用黑线表示)在层与层之间共享,标签用 表示。
右侧:t-SNE(Maaten&Hinton,2008)使用5%的标签对Cora数据集(Sen et al。,2008)训练的双层GCN的隐藏层激活进行可视化。 颜色表示文档类。
这里, 是输入层到一个有H个特征图谱的隐藏层的权重矩阵。
是隐藏层到输出层的权值矩阵。Softmax激活函数被定义为 ,其中 被按行计算。接着,针对半监督多种类的分类结果,我们用交叉熵误差度量对所有已标记节点进行评估: 其中 是有标签的节点索引的集合。
神经网络权值矩阵 和 用梯度下降法进行训练。在这项工作中,我们对每一次的训练迭代用所有的数据采用小批量梯度下降法
3.2实施
在实践中,我们使用tensorflow作为一个基于GPU的进行稀疏矩阵乘法的高效实施方案。时间复杂度为 ,与边的数量呈线性关系。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值