tf.reduce_max用法

对于tf.reduce_max,这个函数有点奇怪,axis=0指的是计算矩阵每列的最大值,axis=1计算行最大值
与numpy 相同
import tensorflow as tf
import numpy as np


a=np.array([[2,4,5,7],[9,3,6,2]])

print('a=\n',a)



print('-'*30+'分割线'+'-'*30)
a1=tf.reduce_max(a,axis=0)
print( 'tf.reduce_max(a,axis=0)=\n',a1.numpy())

a2=np.max(a,axis=0)
print( 'np.max(a,axis=0)=\n',a2)


print('-'*30+'分割线'+'-'*30)
a1=tf.reduce_max(a,axis=1)
print( 'tf.reduce_max(a,axis=1)=\n',a1.numpy())
a2=np.max(a,axis=1)
print( 'np.max(a,axis=1)=\n',a2)

print('-'*30+'分割线'+'-'*30)
a1=tf.reduce_max(a)
print( 'tf.reduce_max(a)=\n',a1.numpy())

a2=np.max(a)
print( 'np.max(a)=\n',a2)
a=
 [[2 4 5 7]
 [9 3 6 2]]
------------------------------分割线------------------------------
tf.reduce_max(a,axis=0)=
 [9 4 6 7]
np.max(a,axis=0)=
 [9 4 6 7]
------------------------------分割线------------------------------
tf.reduce_max(a,axis=1)=
 [7 9]
np.max(a,axis=1)=
 [7 9]
------------------------------分割线------------------------------
tf.reduce_max(a)=
 9
np.max(a)=
 9
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值