介绍一下 D* 算法 ,其更新机制是什么

已思考完成
收起

好的,我需要介绍一下D算法及其更新机制。首先,根据提供的参考内容,D算法是动态A*的改进版,主要用于动态环境下的路径规划。它的核心特点包括反向搜索、增量式更新和局部一致性维护。

首先,D算法和A的区别在于搜索方向,D*是从目标点向起点反向搜索,这样可以有效利用之前计算的路径信息,当环境变化时,只需更新受影响的部分,而不是重新计算整个路径。这在动态环境中非常有用,比如机器人遇到新障碍物时。

接下来是D的更新机制。参考内容提到,D通过维护每个节点的g值(到终点的实际代价)和rhs值(基于父节点的最小代价)。当检测到障碍物变化时,相关节点的h值会被更新,并标记为局部不一致,需要重新处理。算法优先处理key值较小的节点,key由g和h的组合决定,确保高效更新。

局部一致性是关键概念。当节点的g值等于rhs时,节点是局部一致的;若不等,则需要调整。例如,新增障碍物导致rhs变小,节点变为过一致,需要传播更新以调整路径。反之,障碍物移除可能使rhs变大,节点欠一致,同样需要处理。这种机制允许D*仅更新受影响区域,减少计算量。

另外,D* Lite作为改进版本,引入了k_m参数来优化起点变化时的处理,避免重新计算所有节点的key值。这在机器人移动过程中特别重要,因为起点位置不断变化,需要高效调整路径。

需要将这些点组织起来,先介绍D的基本原理,再详细解释更新机制,包括局部一致性、key值计算和增量更新的过程。同时要对比A,突出D在动态环境中的优势。可能还需要提到D的应用场景,比如机器人导航和动态障碍物处理。

D*算法是一种针对动态环境优化的增量式路径规划算法,其核心思想是通过反向搜索和局部更新机制实现高效重规划。以下从原理、更新机制和特点展开说明:


一、D*算法核心原理

  1. 反向搜索架构
    与A从起点向终点搜索不同,D终点反向搜索至起点,预先计算所有节点到终点的最优路径代价(g值),为后续动态调整提供基础数据。

  2. 关键参数定义

    • g(n):节点n到终点的实际代价(累积路径成本)

    • rhs(n):基于父节点的最小代价,即 rhs(n) = min(g(n') + c(n,n'))(n'为n的邻居)

    • h(n):节点n到起点的启发式估计值(通常用曼哈顿或欧氏距离)

    • Key值:优先级队列排序依据,Key = [k1, k2],其中:

      • k1 = min(g(n), rhs(n)) + h(n)

      • k2 = min(g(n), rhs(n))

      Key值越小优先级越高,优先处理k1较小或k1相等时k2较小的节点

  3. 局部一致性(Consistency)

    • 一致状态:当g(n) = rhs(n)时,节点处于最优状态

    • 过一致(Overconsistent):g(n) > rhs(n),通常因障碍物删除或路径优化触发更新

    • 欠一致(Underconsistent):g(n) < rhs(n),多由新增障碍物导致路径受阻


二、动态更新机制

当检测到环境变化(如新增障碍物),D*通过以下步骤实现增量更新:

  1. 障碍物标记与代价更新

    • 将受影响节点n的通行代价c(n)设为无穷大(或根据传感器数据调整)

    • 更新n及其邻接节点的rhs值,并标记为局部不一致

  2. 优先级队列处理

    • 将不一致节点按Key值插入优先队列(Open List)

    • 循环弹出Key值最小的节点进行处理:

      • 过一致节点:降低其g值至rhs,传播代价至邻居(类似路径优化)

      • 欠一致节点:提升g值至与rhs一致,触发路径绕障调整

  3. 传播更新

    • 若节点n的rhs值变化导致其邻居m的rhs(m) > g(m),则将m加入队列

    • 通过局部扩散更新,避免全局重搜索(仅更新受影响区域)

示例场景
机器人原路径经过节点(4,3),此时该节点变为障碍:

  • (4,3)的rhs设为∞,标记为欠一致并加入队列

  • 处理队列时发现其父节点(3,2)的rhs需重新计算

  • (3,2)找到新父节点(4,1),更新自身rhs并传播至上游节点(2,1)

  • 最终路径绕开障碍,仅局部调整而非全路径重规划


三、算法优势与改进

  1. 增量式更新效率

    • 复用历史路径信息,更新复杂度仅与变化区域相关(传统A*需全图重搜索)

    • 实测显示,障碍物变动时的重规划耗时仅为A*的10%-30%

  2. D Lite优化*

    • 引入k_m参数补偿起点移动,避免Key值全局重计算

    • 公式调整为:k1 = min(g,rhs) + h + k_m

    • 当机器人移动时,仅需累加k_m并调整队列优先级

  3. 适用场景

    • 动态障碍物(如移动车辆、临时路障)

    • 部分未知环境(SLAM建图与路径规划同步进行)

    • 资源受限设备(嵌入式系统算力有限时仍能实时响应)


四、与A*算法的对比

特性A*D*
搜索方向起点→终点终点→起点
动态更新能力需全图重搜索局部增量更新
存储开销仅保留路径节点存储全图节点状态
适用场景静态环境动态/未知环境
实时性低(环境变化时)


五、应用实例

  • 火星探测车:在未知地形中实时调整路径避开岩石

  • 仓储机器人:动态规避突然出现的人员或货物

  • 无人机导航:应对临时禁飞区或移动障碍物

D*算法通过巧妙的反向搜索和局部一致性维护,在动态路径规划领域平衡了效率与精度,成为机器人导航系统的核心算法之一。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值