采用微带或者带状线实现低通滤波器的一种简单办法是:采用很高和很低的微带线交替排列以实现滤波器。
注意:这种方法只能用来实现低通滤波器。
优点:容易设计、结构紧凑
缺点:电特性不是很好,由于推导中涉及到近似性,一般需要EM仿真
场合:不需要锐截止的幅频响应
思想:在传输线和电感/电容之间建立一种近似关系,但这种近似关系是通过T形网络进行中间转换。
4.1、网络分析
第一步近似:传输线和T形网络的近似
为了使两者等价,只需要使两者的网络参数相等即可。
传输线的ABCD矩阵:
传输线的[Z]矩阵:
T型网络的[ABCD]矩阵:
T型网络的[Z]矩阵:
其实分析任何一种网络矩阵形式都是可以的,这里我们可以看出,分析Z矩阵更为方便。对比两者的Z矩阵:
可解得T型网络串联阻抗Z1和Z3:
第二步近似:T形网络与单个串并元件的近似
1、当Z0很大时,意味着传输线阻抗较大,传输线较粗,Z1较大,Y3较小(Z3较大)T型网络可以等效为一个串联元件:
再看看Z1的表达式,该串联元件为电感。
2、当Z0较小时,意味着传输线阻抗较小,传输线较细,Z1较小,Y3较大(Z3较小)T型网络可以等效为一个并联元件:
再看看Z3的表达式,该并联元件为电容。
注:
1、所以高低阻抗线的滤波器只能是低通滤波器。
2、以上所有分析经历了两次近似,所以永远不会等价
4.2、回顾
1、我们通过T型网络作中间桥梁,在传输线和串/并联元件之间构建了一种关系。
2、以上分析过程用了两次近似:
(a)jZ0 tanβl/2 ≈ jZ0 βl/2(βl<<π/4)
(b)Z0很大及Z0较小时,对网络化简.
4.3、变换关系
其中R0是滤波器的端接阻抗,L和C是低通原型归一化的值,即gk
4.4、设计思路
-
根据带外衰减,确定滤波器的阶数N,查表得到各gk;
-
选定高低阻抗Zh,Zl,通常选择能够做到的最高和最低阻抗。由此确定传输线的线宽Wk;
-
计算得到各βlk;
-
进而得到lk;
4.5、其他
1、分布参数滤波器对比集总参数滤波器有一个很明显的不同:那就是多通带,因为角频率的周期性
2、高低阻抗低通滤波器和之间讲过的 微波滤波器——Richard变换及Kuroda恒等变换(三)设计出来的滤波器有区别,后者频率响应是规整的周期性,因为微带线的长度是λ/8,而前者线长就是设计参数之一,所以响应不是完全周期的。
3、微带线的高低阻抗值是我们自己随意定的,至于选多少,有两点要求:①保证物理可加工 ②保证微带线的βlk<45°。
4、因为近似性,一般设计完成后,要进行EM仿真。