03、滤波器设计——阶跃阻抗低通滤波器

1、设计指标

用微带或带状线实现低通滤波器的一种相对容易的方法是用很高和很低特征阻抗的传输线交替排列的结构。这种滤波器通常称为阶跃阻抗(Stepped-Impedance)或高Z一低Z滤波器,由于它结构紧凑且较容易设计,所以比较流行。然而,它的电特性不是很好,故通常应用于不需要有陡峭截止响应的场合。

(1)具有最平坦响应(巴特沃斯)。
(2)截止频率为2.5GHz(通带截止频率)。
(3)在4GHz处的插入损耗必须大于20dB(阻带截止频率及其波纹)。
(4)所设计滤波器的阻抗为50Ω,具有最平坦响应,采用6阶巴特沃兹低通原型,最高实际线阻抗为120Ω,最低实际线阻抗为20Ω,采用的基片参数d=1.58 \mathrm{~mm}, \varepsilon_{\mathrm{r}}=4.2, \quad \tan \delta=0.02,铜导体的厚度t=0.035mm。

2、低通滤波器设计步骤

(1)根据设计要求确定低通原型的元器件值(阶数)。

(2)集总元件→高低阻抗线→微带线

电感↔高阻线↔线细(太细则功率太小)

电容↔低阻线↔线宽(不可与波长比拟)

2.1、低通原型滤波器设计

先计算:

\left|\frac{\omega}{\omega_{c}}\right|-1=\frac{4}{2.5}-1=0.6

 由图可知,对于n=6的曲线,当\left ( \left|\frac{\omega}{\omega_{c}}\right|-1 \right )为0.6时,LA>20dB,故最大平坦滤波器计数n=6。

 由表给出的低通原型值:g1=0.517,g2=1.414,g3=1.932,g4=1.932,g5=1.414,g6=0.517,g7=1(50Ω电阻)。

 2.2、滤波器原理图设计

由低通原型电路转换到微带电路主要就是得到理想传输线的电长度,再利用Start TineCalc转换到微带线。

低通原型→理想传输线电长度(弧度制)

电感:\theta =\frac{gR_{0}}{Z_{h}

电容:\theta =\frac{gZ_{l}}{R_{0}}

其中R_{0}为滤波器阻抗=50Ω。

一般高阻选择100左右,低阻选择20左右。

再利用Start TineCalc工具转换到微带线

最终原理图(为了方便后续优化,微带线宽度长度用变量代替)

注:微带线宽度只受阻抗的影响,微带线长度受阻抗和电长度两个因素影响。

 2.3、仿真结果

 可以看到仿真结果未达到设计要求,需要进一步优化。

3、滤波器电路参数优化

仿真优化原理图:

注意GOAL的设置,dB(S(1,1)),SP1,以及频率后面的单位Ghz都要输入正确。

至于优化可先用Random(随机) 大范围搜索,再用Gradient(梯度)局部收敛,优化后进一步修改优化变量范围多次优化。

 优化后的仿真结果:

 可见优化后依旧未满足设计指标,则需要进一步优化和改进。

4、其他参数仿真

(1)寄生通带

滤波器在其他频率成分上会产生寄生通带。

 (2)群延时

指信号通过滤波器所需要的时间。

 注意修改纵坐标的大小

5、微带滤波器版图生成与仿真

(1)版图的生成

使两个Term、接地、集总元器件、以及仿真控件失效。

 Layout→Generate/Update Layout生成板图,并加上端口

 (2)EM电磁仿真设置

填入微带线板层结构:

H= 25mil(基板的厚度)

Er=9.9(基板的相对介电常数)

Mur=1(基板的磁导率常数)

Cond=4.1E+7(微带线走线层所使用的金属导体(表面导体)的导电率)

Hu默认(空气腔与PCB板层的距离,上层空气的厚度)

T=0.7mil(金属(表面导体)厚度)

TanD=0.0009(基板损耗角正切)

(3)仿真结果

 可见版图仿真和原理图仿真有很大差别,需要重新回到原理图窗口进行优化仿真。

### 什么是低通滤波器 低通滤波器是一种允许于特定频率范围内的信号过,而衰减高于该频率的信号的电子设备或电路设计[^1]。其核心功能在于减少高频成分的影响,从而保留较频部分的信息。 #### 工作原理 低通滤波器的核心工作原理基于电学中的阻抗特性以及信号处理理论。它常由电阻、电感和电容元件构成,在这些组件中,电容器会随着频率增加逐渐降对电流的阻碍作用,而电感则相反,随频率升高增大阻力。因此,当输入信号经过这样的网络结构时,高频频段被削弱甚至完全去除,只有满足条件的频分量得以顺利传输[^2]。 对于理想化的低通滤波器而言,它的幅频响应曲线应该呈现阶跃形状——即在截止频率之前保持恒定增益;超过这一界限之后迅速下降至零。然而实际应用当中由于物理实现上的局限性,往往无法达到如此完美的效果,而是存在过渡带宽区域,在这里信号强度逐步减弱直至接近忽略不计的程度[^3]。 ```python import numpy as np from scipy import signal import matplotlib.pyplot as plt # 设计一个简单的巴特沃斯模拟低通滤波器 b, a = signal.butter(4, 100, 'low', analog=True) w, h = signal.freqs(b, a) plt.semilogx(w, 20 * np.log10(abs(h))) plt.title('Butterworth Lowpass Filter Frequency Response') plt.xlabel('Frequency [radians / second]') plt.ylabel('Amplitude [dB]') plt.grid(True) plt.show() ``` 上述代码展示了如何利用Python编程语言配合SciPy库来创建并绘制一个四阶巴特沃斯类型的连续时间域下的低通滤波器幅度响应图谱实例演示过程[^4]。 #### 应用场景 - **音频处理**: 去除不需要的声音噪声或者分离不同乐器产生的音调层次以便进一步编辑混缩等工作流程里经常需要用到此类技术手段; - **图像平滑化**: 对于数字化图片文件来说,可以过空间领域里的卷积操作模仿类似的效应达成消除细节纹理特征的目的进而获得更加柔和的画面观感体验; - **信系统**: 提取基带数据流的同时抑制载波及其谐波干扰项确保接收端能够正确解码原始消息内容; - **传感器读数优化**: 平抑因外界环境变化引起的小规模波动使得测量结果更具代表性反映真实情况趋势走向等等诸多方面均可见到它们活跃的身影[^5]。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

冬冬甜甜枪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值