初识离散,从字面意思感觉它是一门很散的学科,感受不到它在生活中的具体作用。通过本篇论文逐渐意识到离散在生活中的应用。我们都知道离散是研究散量的结构以及相互关系的数学学科,在本篇论文中离散各章知识似乎都在其中起着举足轻重的作用。集合论、关系概念、数理逻辑、代数系统和图论在本篇论文中都展现的淋漓尽致。
1集合论的应用;我们知道集合时构成离散结构的基础,表示着对象之间的联系与状态;在论文第九页中提到的双射关系也是集合论中的一部分,以及在讲解贝叶斯因果图中所提及的:“Vg是n个节点的集合”,论文中多处可见由一个或多个确定元素所构成的整体。
2关系概念:离散数学研究离散对象,主要研究对象之间的联系,即关系。文章开篇中所提及贝叶斯因果图的起源也与关系有关。关系常与集合联系起来,论文中所涉及的马尔科夫等价类,在离散数学中,等价关系是指定义在集合A上的关系,满足自反的、对称的和传递的等性质,设R是定义在集合A上的等价关系,与A中一个元素a有关系的所有元素的集合叫做a的等价类。还有文中随处可见的关系图,让我们见识到了关系的重要性。
3数理逻辑又包括了命题逻辑和谓词逻辑。论文中多次运用了各类的逻辑联结词,例如:→←,也运用了谓词逻辑词中各类量词,运用符号体系使得更加简洁明了。命题逻辑的推理,命题函数的运用,以及量词精确使用都让整个内容变得精确简洁化。
4代数系统在本论文中也有深刻体现,对于医学而言,各方算法之间的代数关系息息相关,在本论文中的优化算法就体现了代数系统的重要性,体现了离散断层。
5图论,图论是研究点线构成的图像问题。在这个论文中似乎随处可见。文中所提及的完美图、完全部分有向无环图,因果图中的V-结构、链、分叉,基于NCA的节点选择,它都是体现了图论,图论的发展不仅在医学中有重要作用也在计算机中起着重要作用。
总之离散和我们的生活息息相关,我们应该学会利用离散知识去解决生活中的问题。