熵与信息增益等各种概念讲解

熵与信息增益

在决策树算法中,决定特征优先级时,需要用到熵的概念,先挖个坑

1 信息量

信息量是用来衡量一个事件的不确定性的;一个事件发生的概率越大,不确定性越小,则它所携带的信息量就越小。

假设X是一个离散型随机变量,其取值集合为X

,概率分布函数为p(x)=Pr(X=x),x∈X,我们定义事件X=x0

的信息量为:

I(x0)=−log(p(x0))

当p(x0)=1时,熵将等于0,也就是说该事件的发生不会导致任何信息量的增加。

举个例子,小明考试经常不及格,而小王则经常得满分,所以我们可以做如下假设:
事件A:小明考试及格
概率为

P(xA)=0.1

信息量为

I(xA)=−log(0.1)=3.3219
事件B:小王考试及格
概率为

P(xB)=0.999

信息量为

I(xB)=−log(0.999)=0.0014
可以看出:小明及格的可能性很低(10次考试只有1次及格),因此如果某次考试及格了(大家都会说:XXX竟然及格了!),必然会引入较大的信息量,对应的I值也较高;而对于小王而言,考试及格是大概率事件,在事件B发生前,大家普遍认为事件B的发生几乎是确定的,因此当某次考试小王及格这个事件发生时并不会引入太多的信息量,相应的I值也非常的低。

这跟《黑天鹅》一书中强调的“黑天鹅事件往往有重大影响”有异曲同工之妙。

2 熵

熵是用来衡量一个系统的混乱程度的,代表一个系统中信息量的总和;信息量总和越大,表明这个系统不确定性就越大。

假设小明的考试结果是一个0-1分布XA

只有两个取值{0:不及格,1:及格}。那么在某次考试结果公布前,根据先验知识,小明及格的概率仅有10%,其余90%的可能都是不及格的。

在上面章节,我们可以分别得到小明和小王考试及格对应的信息量。
而如果我们想要进一步度量小明考试结果的不确定度,就要借助于熵的概念。

信息量用来衡量一个事件的不确定度,熵则用来衡量一个系统(也就是所有事件)的不确定度。

那如何度量系统中所有事件的不确定度?期望。

我们对所有可能事件所带来的信息量求期望,其结果就能衡量小明考试的不确定度:

HA(x)=−[p(xA)log(p(xA))+(1−p(xA))log(1−p(xA))]=0.4690

与之对应地,小王的熵:

HB(x)=−[p(xB)log(p(xB))+(1−p(xB))log(1−p(xB))]=0.0114
虽然小明考试结果的不确定度较低,毕竟十次有9次都不及格;但是小王考试结果的不确定度更低,1000次考试只有1次不及格的机会,结果相当的确定。

再假设一个成绩相对普通的学生小东,他及格的概率是P(xC)=0.5

,即及格与否的概率是一样的,对应的熵:

HC(x)=−[p(xC)log(p(xC))+(1−p(xC))log(1−p(xC))]=1

小东考试结果的不确定度比前边两位同学要高很多,在成绩公布之前,很难准确猜测出他的考试结果。

从上面可以看出,熵是信息量的期望值,它是一个随机变量的确定性的度量。
熵越大,变量的取值越不确定;反之,熵越小,变量取值就越确定。

对于一个随机变量X,它所有可能取值的信息量的期望E[I(x)]

就称为熵。
X的熵定义为:

H(X)=Eplog1p(x)=−∑x∈Xp(x)logp(x)
如果p(x)是连续型随机变量的p(df),则熵定义为:

H(X)=−∫x∈Xp(x)logp(x)dx
为了保证有效性,这里约定当p(x)→0时,有p(x)logp(x)→0

假如X为0-1分布,当两种取值的可能性相等时(p=0.5),不确定度最大(此时没有任何先验知识);当p=0或1时,熵为0,即此时X完全确定。
熵与概率p的关系如下图:

这里写图片描述

注:熵的单位随着公式中log运算的底数而变化,当底数为2时,单位为“比特”(bit),底数为e时,单位为“奈特”。

3 条件熵

在随机变量X发生的前提下,随机变量Y发生所新带来的熵定义为Y的条件熵,用H(Y|X)

表示,用来衡量在已知随机变量X的条件下随机变量Y的不确定性。

如果这样说显得空洞,那么可以进行转换:

H(Y|X)=H(X,Y)–H(X)

上式表示(X,Y)发生所包含的熵减去X单独发生包含的熵。推导如下:

这里写图片描述

4 相对熵

相对熵(relative entropy)又称为KL散度(Kullback-Leibler divergence),KL距离,是两个随机分布间距离的度量。
记为DKL(p||q)

,它度量当真实分布为p时,假设分布q的无效性。

DKL(p||q)=Ep[logp(x)q(x)]=∑x∈χp(x)logp(x)q(x)

=∑x∈χ[p(x)logp(x)−p(x)logq(x)]

=∑x∈χp(x)logp(x)−∑x∈χp(x)logq(x)

=−H(p)−∑x∈χp(x)logq(x)

=−H(p)+Ep[−logq(x)]

=Hp(q)−H(p)

并且为了保证连续性,做如下约定:
0log00=0,0log0q=0,plogp0=∞
显然,当p=q时,两者之间的相对熵DKL(p||q)=0
上式最后的Hp(q)表示在p分布下,使用q进行编码需要的bit数,而H(p)表示对真实分布p所需要的最小编码bit数。
基于此,相对熵的意义就很明确了:DKL(p||q)

表示在真实分布为p的前提下,使用q分布进行编码相对于使用真实分布p进行编码(即最优编码)所多出来的bit数。

5 交叉熵

交叉熵容易跟相对熵搞混,二者有所区别。
假设有两个分布p,q,它们在给定样本集上的交叉熵定义如下:

CEH(p,q)=Ep[−logq]=−∑x∈χp(x)logq(x)=H(p)+DKL(p||q)
可以看出,交叉熵与相对熵仅相差了H(p),当p已知时,可以把H(p)看做一个常数,此时交叉熵与KL距离在行为上是等价的,都反映了分布p,q的相似程度。
最小化交叉熵等于最小化KL距离。它们都将在p=q时取得最小值H(p)(因为p=q时KL距离为0,因此有的工程文献中将最小化KL距离的方法称为Principle of Minimum Cross-Entropy (MCE)或Minxent方法)。

在logistic regression中,
p:真实样本分布,服从参数为p的0-1分布,即X∼B(1,p)
q:待估计的模型,服从参数为q的0-1分布,即X∼B(1,q)
两者的交叉熵为:

CEH(p,q)=−∑x∈χp(x)logq(x)

=−[Pp(x=1)logPq(x=1)+Pp(x=0)logPq(x=0)]

=−[plogq+(1−p)log(1−q)]

=−[yloghθ(x)+(1−y)log(1−hθ(x))]
对所有训练样本取均值得:

−1m∑im=1m[y(i)loghθ(x(i))+(1−y(i))log(1−hθ(x(i)))]
这个结果与通过最大似然估计方法求出来的结果一致。

6 信息增益

在决策树ID3算法中,使用信息增益来选择最佳的特征作为决策点。

信息增益表示得知特征X的信息而使得类Y的信息不确定性减少的程度,即用来衡量特征X区分数据集的能力。
当新增一个属性X时,信息熵H(Y)

的变化大小即为信息增益。 I(Y|X)

越大表示X越重要。

I(Y|X)=H(Y)−H(Y|X)

7 互信息

两个随机变量X,Y的互信息定义为X,Y的联合分布和各自独立分布乘积的相对熵,用I(X,Y)表示:
这里写图片描述

而一般来说,熵H(Y)

与条件熵H(Y|X)

之差称为互信息。推导如下:

这里写图片描述

所以在决策树算法中,信息增益等价于训练数据集中类和特征的互信息。

8 信息增益比

在决策树C4.5算法中,使用信息增益比来选择最佳的特征作为决策点。

特征A对训练数据集D的信息增益比gR(D|A)

定义为信息增益I(D|A)与训练数据集D关于特征A的熵HA(D)

之比:

gR(D|A)=I(D|A)HA(D)

这之中

HA(D)=−∑i=1n|Di||D|log2|Di||D|,n是特征A的取值个数

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值