【小波分析】四、正交多分辨分析

【小波分析】四、正交多分辨分析

内容回顾

形而上的理解

上一次我们引入了多分辨分析,及其与正交小波的一个关系。

多分辨分析 V j V_j Vj 有这样一些特征。 V j V_j Vj 包含于 V j + 1 V_{j+1} Vj+1 里面的,它可以通过在时间上压缩一倍直接得到。而每个 V j V_j Vj 空间,都有自己的一组标准正交基, V j + 1 V_{j+1} Vj+1 的标准正交基,并不是通过 V j V_j Vj 的标准正交基直接扩充得到,两组基之间,可能完全变了样。它最小的是一个只包含零元素的平凡空间, V j V_j Vj 中最大的一个,刚好充满整个 L 2 L^2 L2 空间。这个过程就像盖房子,你要盖更大的房子,你就要把原来的房子推倒重来。

而正交小波有这样一些特征。 W j + 1 W_{j+1} Wj+1 也是可以通过 W j W_j Wj 在时间上压缩一倍得到,更神奇的是, W j + 1 W_{j+1} Wj+1 W j W_j Wj 是正交的,这就好比,一个东西,你把在时间上压了一压,就变得不是自己了,反而是和自己正交的东西。每个 W j W_{j} Wj 都有一组标准正交基,基和基之间也是正交的, W j + 1 W_{j+1} Wj+1 的基可以通过 W j W_j Wj的基时间伸缩和单位化得到。把这些所有的 W j W_j Wj 基放在一块,刚好可以张成整个的 L 2 L^2 L2 空间。这个过程就好比是贴瓷砖,每次都在原来的瓷砖周围贴上一层新的瓷砖,一直到铺满一面墙。

V j V_j Vj W j W_j Wj 之间有这样一个关系。

V j + 1 = V j ⊕ W j V_{j+1}=V_{j} \oplus W_{j} Vj+1=VjWj

所以,从这里来看,如果给定了一个正交多辨分析,只要找到 V j + 1 V_{j+1} Vj+1 V j V_j Vj 上的补空间的一组标准正交基,使得它和前面所有的 W j W_j Wj 是正交的,那么,我们其实就找到了正交小波。我们可以把这个过程写得更加具体而可操作,那么这就是正交多辨分析的主要内容。

多分辨分析与正交小波

回顾一下多分辨的定义:

定义 { V j ; j ∈ Z } \left\{V_{j} ; j \in Z\right\} {Vj;jZ} L ( R ) L(R) L(R)上的一列闭子空间, ϕ ( x ) \phi(x) ϕ(x) L 2 ( R ) L^{2}(R) L2(R) 中 的一个函数,如果它们满足如下的五个条件,即
(1) 单调性:
V j ⊂ V j + 1 , ∀ j ∈ Z V_{j} \subset V_{j+1}, \quad \forall j \in Z VjVj+1,jZ
(2) 唯一性:
⋂ j ∈ Z V j = { 0 } \bigcap_{j \in Z} V_{j}=\{0\} jZVj={0}
(3) 稠密性:
( ⋃ j ∈ Z V j ) ‾ = L 2 ( R ) \overline{\left(\bigcup_{j \in Z} V_{j}\right)}=L^{2}(R) jZVj=L2(R)
(4) 伸缩性:
f ( t ) ∈ V j ⇔ f ( 2 t ) ∈ V j + 1 ∀ j ∈ Z f(t) \in V_{j} \Leftrightarrow f(2 t) \in V_{j+1} \quad \forall j \in Z f(t)Vjf(2t)Vj+1jZ
(5) 可构造性:
{ ϕ ( t − n ) ; n ∈ Z } \{\phi(t-n) ; n \in Z\} {ϕ(tn);nZ}
构成子空间 V 0 V_{0} V0 的标准正交基。

那么,称 { { V j ; j ∈ Z } ; ϕ ( x ) } \left\{\left\{V_{j} ; j \in Z\right\} ; \phi(x)\right\} {{Vj;jZ};ϕ(x)} L 2 ( R ) L^{2}(R) L2(R) 上的一个正交多分辨分析(MRA,Multi-Resolution Analysis)。

由如上的定义,我们容易知道:
{ ϕ j , n ( t ) = 2 j 2 ϕ ( 2 j t − n ) ; n ∈ Z } \left\{\phi_{j, n}(t)=2^{\frac{j}{2}} \phi\left(2^{j} t-n\right) ; n \in Z\right\} {ϕj,n(t)=22jϕ(2jtn);nZ}
构成了 V j V_j Vj 空间的一组标准正交基。

仿照 Shannon 小波的构造方法,对 ∀ j ∈ Z \forall j \in Z jZ, 定义如下的子空间 W j W_{j} Wj
W j ⊥ V j , V j + 1 = W j ⊕ V j W_{j} \perp V_{j}, V_{j+1}=W_{j} \oplus V_{j} WjVj,Vj+1=WjVj

容易验证,子空间序列 { W j ; j ∈ Z } \left\{W_{j} ; j \in Z\right\} {Wj;jZ} 具有下述性质:

  • ∀ j ≠ l , W j ⊥ W l \forall j \neq l, W_{j} \perp W_{l} j=l,WjWl;
  • L 2 ( R ) = ⊕ l ∈ Z W l L^{2}(R)=\underset{l \in Z}{\oplus} W_{l} L2(R)=lZWl;
  • ∀ j ∈ Z , g ( t ) ∈ W j ⇔ g ( 2 t ) ∈ W j + 1 \forall j \in Z, g(t) \in W_{j} \Leftrightarrow g(2 t) \in W_{j+1} jZ,g(t)Wjg(2t)Wj+1

我们要构造正交小波,我们只要找到一组标准正交基,要得到一组标准正交基,由第一条和第二条我们知道,只要找到所有 W j W_j Wj 的一组标准正交基就可以了,再由第三条,我们其实只要找到 W 0 W_0 W0 的一组标准正交基 ψ ( t − k ) \psi(t-k) ψ(tk) 就可以了。这是因为如果 ψ ( t − k ) \psi(t-k) ψ(tk) V 0 V_0 V0 的标准正交基,那么

{ 2 j 2 ψ ( 2 j t − k ) ; ( j , k ) ∈ Z × Z } \left\{2^{\frac{j}{2}} \psi\left(2^{j} t-k\right) ;(j, k) \in Z \times Z\right\} {22jψ(2jtk);(j,k)Z×Z}

必然是 W j W_j Wj 的标准正交基。

所以,我们要构造正交小波,要做的无非就是找到 W 0 W_0 W0 的一组标准正交基

尺度方程和小波方程

尺度方程

由于 ϕ ( x ) ∈ V 0 ⊆ V 1 \phi(x) \in V_{0} \subseteq V_{1} ϕ(x)V0V1, V 1 V_{1} V1 有标准正交基 { 2 ϕ ( 2 t − n ) ; n ∈ Z } \{\sqrt{2} \phi(2 t-n) ; n \in Z\} {2 ϕ(2tn);nZ},必存在唯一的系数序列 { h n ; n ∈ Z } ∈ l 2 ( Z ) \left\{h_{n} ; n \in Z\right\} \in l^{2}(Z) {hn;nZ}l2(Z), 使得
ϕ ( t ) = 2 ∑ n ∈ Z h n ϕ ( 2 t − n ) \phi(t)=\sqrt{2} \sum_{n \in Z} h_{n} \phi(2 t-n) ϕ(t)=2 nZhnϕ(2tn)
这个方程叫做尺度方程。系数计算的方式为,
h n = ⟨ ϕ ( t ) , 2 ϕ ( 2 t − n ) ⟩ = 2 ∫ R ϕ ( t ) ϕ ˉ ( 2 t − n ) d x h_{n}=\langle\phi(t), \sqrt{2} \phi(2 t-n)\rangle=\sqrt{2} \int_{R} \phi(t) \bar{\phi}(2 t-n) \mathrm{d} x hn=ϕ(t),2 ϕ(2tn)=2 Rϕ(t)ϕˉ(2tn)dx
这个系数叫做低通滤波器系数。对尺度方程做傅里叶变换可以得到,
ϕ ^ ( ω ) = H ( ω 2 ) ϕ ^ ( ω 2 ) \hat \phi(\omega)=\mathrm{H}\left(\frac{\omega}{2}\right) \hat \phi\left(\frac{\omega}{2}\right) ϕ^(ω)=H(2ω)ϕ^(2ω)
其中,
H ( ω ) = 1 2 ∑ n ∈ Z h n e − i n ω \mathrm{H}(\omega)=\frac{1}{\sqrt{2}} \sum_{n \in Z} h_{n} \mathrm{e}^{-\mathrm{i} n \omega} H(ω)=2 1nZhneinω
这个称为低通滤波器。

小波方程

类比尺度方程,对于 ψ ( x ) ∈ W 0 ⊆ V 1 \psi(x) \in W_{0} \subseteq V_{1} ψ(x)W0V1,存在 { g n ; n ∈ Z } ∈ l 2 \left\{g_{n} ; n \in Z\right\} \in l^2 {gn;nZ}l2,使得,
ψ ( t ) = 2 ∑ n ∈ Z g n ϕ ( 2 t − n ) \psi(t)=\sqrt{2} \sum_{n \in Z} g_{n} \phi(2 t-n) ψ(t)=2 nZgnϕ(2tn)

做傅里叶变换可以得到频域形式,
ψ ^ ( ω ) = G ( ω 2 ) ϕ ^ ( ω 2 ) \hat \psi(\omega)=G\left(\frac{\omega}{2}\right) \hat \phi\left(\frac{\omega}{2}\right) ψ^(ω)=G(2ω)ϕ^(2ω)
其中,
G ( ω ) = 1 2 ∑ n ∈ Z g n e − i n ω G(\omega)=\frac{1}{\sqrt{2}} \sum_{n \in Z} g_{n} \mathrm{e}^{-\mathrm{i} n \omega} G(ω)=2 1nZgneinω
这个称为带通滤波器。 g n g_{n} gn 称为脉冲响应系数。

标准正交系的频域表示

引理 设函数 s ( x ) ∈ L 2 ( R ) s(x) \in L^{2}(R) s(x)L2(R), 那么 { s ( t − n ) ; n ∈ Z } \{s(t-n) ; n \in Z\} {s(tn);nZ} 构成 L 2 ( R ) L^{2}(R) L2(R) 的 标准正交系,即
⟨ s ( t − n ) , s ( t − l ) ⟩ = δ ( n − l ) \langle s(t-n), s(t-l)\rangle=\delta(n-l) s(tn),s(tl)=δ(nl)
的充分必要条件是
∑ k ∈ Z ∣ s ^ ( ω + 2 k π ) ∣ 2 = 1  a.e.  ω ∈ R \sum_{k \in Z}|\hat s(\omega+2 k \pi)|^{2}=1 \quad \text { a.e. } \omega \in R kZs^(ω+2kπ)2=1 a.e. ωR

证明:
⟨ s ( t − n ) , s ( t − l ) ⟩ = 1 2 π ∫ R s ^ ( ω ) e − i n ω ( s ^ ( ω ) e − i l ω ‾ ) d ω = 1 2 π ∫ 0 2 π ∑ k ∈ Z ∣ s ^ ( ω + 2 k π ) ∣ 2 e − i ( n − l ) ω d ω \begin{aligned} \langle s(t-n), s(t-l)\rangle &=\frac{1}{2 \pi} \int_{R} \hat s(\omega) \mathrm{e}^{-\mathrm{i} n \omega}\left(\overline{\hat s (\omega) \mathrm{e}^{-\mathrm{i} l \omega}}\right) \mathrm{d} \omega=\\ & \frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{k \in Z}|\hat s(\omega+2 k \pi)|^{2} \mathrm{e}^{-\mathrm{i}(n-l) \omega} \mathrm{d} \omega \end{aligned} s(tn),s(tl)=2π1Rs^(ω)einω(s^(ω)eilω)dω=2π102πkZs^(ω+2kπ)2ei(nl)ωdω

低通滤波器和带通滤波器性质

∣ H ( ω ) ∣ 2 + ∣ H ( ω + π ) ∣ 2 = 1 ,  a.e.  ω ∈ R |\mathrm{H}(\omega)|^{2}+|\mathrm{H}(\omega+\pi)|^{2}=1, \text { a.e. } \omega \in R H(ω)2+H(ω+π)2=1, a.e. ωR

满足这种共轭条件的叫共轭滤波器。

∣ G ( ω ) ∣ 2 + ∣ G ( ω + π ) ∣ 2 = 1 ,  a.e.  ω ∈ R |G(\omega)|^{2}+|G(\omega+\pi)|^{2}=1, \text { a.e. } \omega \in R G(ω)2+G(ω+π)2=1, a.e. ωR

H ( ω ) G ˉ ( ω ) + H ( ω + π ) G ˉ ( ω + π ) = 0 ,  a.e.  ω ∈ R \mathrm{H}(\omega) \bar{G}(\omega)+\mathrm{H}(\omega+\pi) \bar{G}(\omega+\pi)=0, \quad \text { a.e. } \omega \in R H(ω)Gˉ(ω)+H(ω+π)Gˉ(ω+π)=0, a.e. ωR

从证明这三条的证明过程中可以看出,这三条的相对应的充要条件分别是: ϕ ( t − n ) \phi(t-n) ϕ(tn) 构成了 L 2 ( R ) L^2(\mathbb{R}) L2(R) 的标准正交系; ψ ( t − n ) \psi(t-n) ψ(tn) 构成了 L 2 ( R ) L^2(\mathbb{R}) L2(R) 的标准正交系; ϕ ( t − n ) \phi(t-n) ϕ(tn) 张成的空间和 L 2 ( R ) L^2(\mathbb{R}) L2(R) 张成的空间正交。

正交小波的构造

正交小波的充要条件

首先,引入矩阵记号 M ( ω ) \boldsymbol{M}(\omega) M(ω)
M ( ω ) = ( H ( ω ) G ( ω ) H ( ω + π ) G ( ω + π ) ) M(\omega)=\left(\begin{array}{cc} \mathrm{H}(\omega) & G(\omega) \\ \mathrm{H}(\omega+\pi) & G(\omega+\pi) \end{array}\right) M(ω)=(H(ω)H(ω+π)G(ω)G(ω+π))

构造定理
如果按照前述形式构造小波函数 ψ ( x ) \psi(x) ψ(x) ,那么,函数族 { ψ ( x − k ) ; k ∈ Z } \{\psi(x-k) ; k \in Z\} {ψ(xk);kZ} 构成 W 0 W_{0} W0 的标准正交基即 ψ ( x ) \psi(x) ψ(x) 成为正交小波的充要条件是,矩阵 M ( ω ) \boldsymbol{M}(\omega) M(ω) 是西矩阵,即
M ∗ ( ω ) M ( ω ) = I ,  a.e.  ω ∈ R \boldsymbol{M}^{*}(\omega) \boldsymbol{M}(\omega)=\mathrm{I}, \text { a.e. }\omega \in R M(ω)M(ω)=I, a.e. ωR

正交小波的构造

我们可以选择,
G ( ω ) = e − i ω H ‾ ( ω + π ) G(\omega)=\mathrm{e}^{-\mathrm{i} \omega} \overline{\mathrm{H}}(\omega+\pi) G(ω)=eiωH(ω+π)

容易证明,我们这么选 G G G ,必有 M M M 是酉矩阵。这是,

ψ ^ ( ω ) = e − i ω / 2 H ‾ ( π + ω / 2 ) ϕ ^ ( ω / 2 ) \hat \psi(\omega)=\mathrm{e}^{-\mathrm{i} \omega / 2} \overline{\mathrm{H}}(\pi+\omega / 2) \hat \phi(\omega / 2) ψ^(ω)=eiω/2H(π+ω/2)ϕ^(ω/2)

这时候的系数关系是,
g n = ( − 1 ) n − 1 h ˉ 1 − n n ∈ Z g_{n}=(-1)^{n-1} \bar{h}_{1-n} \quad n \in Z gn=(1)n1hˉ1nnZ

从而,小波函数 ψ ( x ) \psi(x) ψ(x) 的时域形式为
ψ ( t ) = 2 ∑ ( − 1 ) n − 1 h ˉ 1 − n ϕ ( 2 t − n ) \psi(t)=\sqrt{2} \sum(-1)^{n-1} \bar{h}_{1-n} \phi(2 t-n) ψ(t)=2 (1)n1hˉ1nϕ(2tn)

特例:Haar 多分辨分析

定义函数 ϕ ( t ) \phi(t) ϕ(t)
ϕ ( t ) = { 1 t ∈ [ 0 , 1 ) 0 t ∈ others \phi(t)=\left\{\begin{array}{ll} 1 & t \in[0,1)\\0 & t \in \text{others} \end{array}\right. ϕ(t)={10t[0,1)tothers

构造,
V m =  Closespan  { 2 m 2 ϕ ( 2 m t − n ) ; n ∈ Z } V_{m}=\text { Closespan }\left\{2^{\frac{m}{2}} \phi\left(2^{m} t-n\right) ; n \in Z\right\} Vm= Closespan {22mϕ(2mtn);nZ}

容易证明 ( { V m ; m ∈ Z } ; φ ( t ) ) \left(\left\{V_{m} ; m \in Z\right\} ; \varphi(t)\right) ({Vm;mZ};φ(t)) 是一个 L 2 ( T ) L^2(T) L2(T) 上的一个正交多分辨分析。

容易计算得到 h 0 = h 1 = 1 / 2 h_{0}=h_{1}=1 / \sqrt{2} h0=h1=1/2 ,对应的尺度方程,
φ ( t ) = 2 ( 1 2 φ ( 2 t ) + 1 2 φ ( 2 t − 1 ) ) \varphi(t)=\sqrt{2}\left(\frac{1}{\sqrt{2}} \varphi(2 t)+\frac{1}{\sqrt{2}} \varphi(2 t-1)\right) φ(t)=2 (2 1φ(2t)+2 1φ(2t1))

这是,可以得到, g 0 = − 1 / 2 , g 1 = 1 / 2 g_{0}=-1 / \sqrt{2}, g_{1}=1 / \sqrt{2} g0=1/2 ,g1=1/2 ,由此得到小波方程,

ψ ( t ) = 2 ( − 1 2 φ ( 2 t ) + 1 2 φ ( 2 t − 1 ) ) \psi(t)=\sqrt{2}\left(-\frac{1}{\sqrt{2}} \varphi(2 t)+\frac{1}{\sqrt{2}} \varphi(2 t-1)\right) ψ(t)=2 (2 1φ(2t)+2 1φ(2t1))

这个为,
h ( t ) = { − 1 0 <  t < 0.5 1 0.5 ≤ t < 1 0 其 他 h(t)=\left\{\begin{array}{cc} -1 & 0<\text { t}<0.5 \\ 1 & 0.5\leq t <1 \\ 0 & 其他 \end{array}\right. h(t)=1100< t<0.50.5t<1

和之前的 Haar 小波函数,只差一个符号。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陆嵩

有打赏才有动力,你懂的。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值