0基础学Python量化交易:让股市赚钱不再难

本文探讨了互联网和金融行业的高薪现象,特别是量化投资领域的发展。提到随着技术进步,计算机工程师取代交易员的趋势,以及Python在量化投资中的重要性。文章提供了针对零基础学习者的Python资源,包括学习路线、视频教程、实战案例和面试准备,鼓励对编程感兴趣的读者抓住行业机遇。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

相信大家都跟我一样,很羡慕互联网行业和金融行业的高薪。

我们也不得不承认,有时候同样的能力,在风口上的行业,确实赚的更多! 所以找对行业真的很重要。

根据MIT Tech Review报道,2000年顶峰时期,高盛在纽约总部的美国现金股票交易柜台就雇佣了600名交易员,替投行金主的大额订单进行股票买卖操作。

但时至如今,这里只剩下两名股票交易员“留守空房”!他们还总结归纳出一名计算机工程师可以取代四名交易员的比率。

传统的一些投资手段开始过时,但对于量化投资领域人才的需求越来越多,在AI的辅助下,人省去了庞杂的工作,专注研究策略,不玩虚的,就是要上实盘赚钱!

如果你在其他行业能够做得很优秀, 为什么不来试试这个更赚钱的行业?

随便看一个招聘需求,工作一年的月薪大致如下,不过量化投资可不止是一个职位哦,你也可以为自己获得低风险、高收益的投资!

Q1:现在入行会不会已经晚了?

可能很多朋友们会担心这个问题,幸运的是,虽然量化投资在国外已经有30多年的历史,但在国内还尚在市场规范阶段,现在入行是最适合的时机,现在进场还不晚!

如果大家对Python感兴趣,这套python学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门Python是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、机器学习、Python量化交易等习教程。带你从零基础系统性的学好Python!

零基础Python学习资源介绍

① Python所有方向的学习路线图,清楚各个方向要学什么东西

② 600多节Python课程视频,涵盖必备基础、爬虫和数据分析

③ 100多个Python实战案例,含50个超大型项目详解,学习不再是只会理论

④ 20款主流手游迫解 爬虫手游逆行迫解教程包

⑤ 爬虫与反爬虫攻防教程包,含15个大型网站迫解

⑥ 爬虫APP逆向实战教程包,含45项绝密技术详解

⑦ 超300本Python电子好书,从入门到高阶应有尽有

⑧ 华为出品独家Python漫画教程,手机也能学习

⑨ 历年互联网企业Python面试真题,复习时非常方便

在这里插入图片描述

👉Python学习路线汇总👈

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取哈)
在这里插入图片描述

👉Python必备开发工具👈

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉Python学习视频600合集👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

👉实战案例👈

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉100道Python练习题👈

检查学习结果。

👉面试刷题👈

在这里插入图片描述

在这里插入图片描述

资料领取

这份完整版的Python全套学习资料已经上传网盘,朋友们如果需要可以点击下方微信卡片免费领取 ↓↓↓【保证100%免费】

小白量化习-自创指标设计 一、准备工作 1、首先把“HP_formula.py”文件复制到自己的工程目录中。 2、在新文件开始增加下面4条语句。 import numpy as np import pandas as pd from HP_formula import * import tushare as ts 二、对数据预处理 我们采用与tushare旧股票数据格式。 #首先要对数据预处理 df = ts.get_k_data('600080',ktype='D') mydf=df.copy() CLOSE=mydf['close'] LOW=mydf['low'] HIGH=mydf['high'] OPEN=mydf['open'] VOL=mydf['volume'] C=mydf['close'] L=mydf['low'] H=mydf['high'] O=mydf['open'] V=mydf['volume'] 三、仿通达信或大智慧公式 通达信公式转为python公式的过程。 1.‘:=’为赋值语句,用程序替换‘:=’为python的赋值命令‘='。 2.‘:’为公式的赋值带输出画线命令,再替换‘:’为‘=’,‘:’前为输出变量,顺序写到return 返回参数中。 3.全部命令转为英文大写。 4.删除绘图格式命令。 5.删除掉每行未分号; 。 6.参数可写到函数参数表中.例如: def KDJ(N=9, M1=3, M2=3): 例如通达信 KDJ指标公式描述如下。 参数表 N:=9, M1:=3, M2:=3 RSV:=(CLOSE-LLV(LOW,N))/(HHV(HIGH,N)-LLV(LOW,N))*100; K:SMA(RSV,M1,1); D:SMA(K,M2,1); J:3*K-2*D; # Python的KDJ公式 def KDJ(N=9, M1=3, M2=3): RSV = (CLOSE - LLV(LOW, N)) / (HHV(HIGH, N) - LLV(LOW, N)) * 100 K = SMA(RSV,M1,1) D = SMA(K,M2,1) J = 3*K-2*D return K, D, J #----------------------------------- #根据上面原理,我们把大智慧RSI指标改 # 为Python代码,如下。 def RSI(N1=6, N2=12, N3=24): """ RSI 相对强弱指标 """ LC = REF(CLOSE, 1) RSI1 = SMA(MAX(CLOSE - LC, 0), N1, 1) / SMA(ABS(CLOSE - LC), N1, 1) * 100 RSI2 = SMA(MAX(CLOSE - LC, 0), N2, 1) / SMA(ABS(CLOSE - LC), N2, 1) * 100 RSI3 = SMA(MAX(CLOSE - LC, 0), N3, 1) / SMA(ABS(CLOSE - LC), N3, 1) * 100 return RSI1, RSI2, RSI3 四、使用公式并绘图 #假定我们使用RSI指标 r1,r2,r3=RSI() mydf = mydf.join(pd.Series( r1,name='RSI1')) mydf = mydf.join(pd.Series( r2,name='RSI2')) mydf = mydf.join(pd.Series( r3,name='RSI3')) mydf['S80']=80 #增加上轨80轨迹线 mydf['X20']=20 #增加下轨20轨迹线 mydf=mydf.tail(100) #显示最后100条数据线 #下面是绘线语句 mydf.S80.plot.line() mydf.X20.plot.line() mydf.RSI1.plot.line(legend=True) mydf.RSI2.plot.line(legend=True) mydf.RSI2.plot.line(legend=True) 不懂就看我的博客 https://blog.csdn.net/hepu8/article/details/93378543
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值