摘要
随着人工智能特别是大语言模型(LLM)技术的迅速发展,创新创业的生态正在发生前所未有的变化。本文探讨了AI赋能创新创业的多重维度,提出了“AI赋能创新创业”的理论框架,并通过对多个行业的实际案例分析,阐明了大模型如何在知识获取、创意生成和决策支持等方面赋能创新与创业。同时,本文在泡菜效应理论基础上,延伸出AI时代特有的创新价值溢价理论,结合新兴商业模式与资源整合方法,提出了适应AI驱动的创新方法论,为创业者和企业提供了实践指导。研究表明,大模型正在从根本上改变创新创业的范式,推动全球创新生态的再造。
1. 引言
1.1 研究背景
人工智能(AI)作为当前全球科技领域最为关注的方向之一,其应用和发展正在从根本上改变全球的经济格局。从最早的规则引擎到现代的深度学习,AI的发展历程可谓波澜壮阔。在过去十年中,机器学习和深度学习技术的突破,使得AI技术从科研领域走向了商业应用,成为许多行业创新的驱动力。
人工智能的迅猛发展尤以大语言模型(LLM)为代表,它们通过深度神经网络从海量数据中提取知识和模式,能够在自然语言处理、图像识别、语音识别等多种任务中展现出超乎想象的能力。尤其是ChatGPT等生成式AI的出现,让AI技术的潜力得到了前所未有的释放。2022年OpenAI推出的ChatGPT吸引了全球媒体和业界的关注,它不仅仅是一个简单的聊天机器人,而是一个强大的知识生成和信息处理工具,它的快速普及标志着人工智能进入了一个全新的时代。
目前,全球AI市场的规模已经突破5000亿美元,并且预计到2030年,AI市场的总规模将超过1.8万亿美元。随着技术的进步,AI正在深刻地改变着传统产业的格局,推动着社会的数字化转型。而这种变革尤为体现在创新创业领域。通过技术的引领和推动,AI为创新者和创业者提供了全新的工具和方法,促使他们能够以更低的成本、更高的效率进行创新,并将这种创新转化为实际的市场价值。
在这样的大背景下,AI赋能创新创业的研究变得尤为重要。学术界对AI技术本身的研究较为广泛,但将AI与创新创业结合起来的系统性研究仍显不足。如何将AI技术转化为推动创新和创业的力量,如何将大模型等AI工具应用于实际商业环境中,是当前研究中急需解决的问题。
1.2 研究意义
当前,AI技术的研究主要集中在算法、数据、计算架构等技术层面,而关于AI如何赋能创新创业,如何帮助创业者和企业在复杂多变的市场中找到新的机会,形成新的竞争优势的研究仍显匮乏。尤其是大语言模型、机器学习等技术如何助力创新的理论框架尚未完全构建。
AI时代创新创业的基本框架
本研究的核心目标是通过构建“AI赋能创新创业”的理论框架,探讨AI如何通过技术、商业模式、资源整合等多维度来支持创新与创业,帮助创业者在日益复杂的市场中找到合适的定位。本研究的理论框架不仅对学术界的AI应用研究具有推动作用,也为创业者提供了切实可行的实践指导。
2. 理论基础
2.1 泡菜效应理论的AI时代延伸
泡菜效应最早起源于韩国,比特币市场价格在韩国的溢价现象被形象地称为“泡菜效应”。这一效应源于市场的封闭性和对稀缺资源的需求,价格因需求大于供应而出现溢价。将泡菜效应引入创新领域,我们可以看到,在特定封闭的市场环境中,创新常常会带来巨大的溢价效应。
在AI时代,泡菜效应有了新的表现形式。AI技术的核心特性之一是能够从大规模的数据集中提取出有价值的信息,而这些数据集通常是封闭的或受到控制的,因此只有少数企业能够获得这种数据资源,进而通过AI技术实现创新溢价。例如,某些行业由于数据壁垒较高,拥有数据的企业在运用AI技术时可以获得更大的市场竞争力,从而形成泡菜效应。进一步来看,这种创新溢价的出现,不仅仅依赖于数据资源,还与算法的优势和应用场景的垄断紧密相关。
AI时代的泡菜效应可以通过以下三个方面来描述:
- 数据孤岛:数据是AI创新的基础,而很多行业的数据资源是由少数企业所控制,导致数据孤岛现象。能够打破数据孤岛的企业,通过AI算法的优化,可以获得数据价值的溢价,从而获得市场的竞争优势。
- 算法优势:随着AI算法特别是深度学习算法的发展,能够利用先进算法优化技术的企业,其创新能力和市场竞争力也得到了提升。这种算法优势所带来的创新溢价,成为AI时代泡菜效应的重要组成部分。
- 场景垄断:在AI应用场景的选择上,某些企业通过深度定制化和专有技术,能够在特定场景中实现技术垄断,获得更多的市场份额和创新价值。
这些现象表明,AI时代的创新溢价不仅仅来自技术本身,还深深扎根于数据、算法和应用场景的壁垒之中。
AI时代泡菜效应演进
2.2 AI时代的创新价值链
AI技术的应用极大地改变了传统创新价值链的各个环节。过去,创新的每一个环节都需要人力和时间的投入,而AI的介入使得各个环节的效率得到了极大的提升。从创意生成、设计到开发、市场验证和优化,AI的应用使得创新过程变得更加高效、精准。
以产品开发为例,传统的产品开发模式通常需要经过长时间的市场调研、创意生成、设计和测试等多个阶段,而在AI赋能下,整个过程被大大压缩。AI通过数据分析帮助创业者快速识别市场需求,借助生成模型提供创新思路,自动化工具帮助产品快速原型化,数据驱动的市场验证降低了成本,最终通过持续的AI优化实现产品的不断进化。
|
价值链环节
|
传统模式
|
AI赋能模式
|
价值提升
|
| — | — | — | — |
|
创意生成
|
头脑风暴
|
AI协助创意生成
|
效率提升10倍
|
|
方案设计
|
人工设计
|
AI辅助设计
|
时间缩短70%
|
|
原型开发
|
手动编码
|
AI代码生成
|
开发速度提升5倍
|
|
市场验证
|
实地调研
|
AI市场分析
|
成本降低60%
|
|
产品优化
|
经验驱动
|
数据驱动
|
准确度提升40%
|
如上表所示,AI技术赋能的创新价值链极大地提高了每个环节的效率,尤其是在方案设计和市场验证阶段,AI技术使得创新者能够在更短的时间内完成更多的任务,降低成本,提升创新成功的概率。
2.3 大模型驱动的创新方法论
大语言模型(LLM)作为AI创新的核心技术之一,正在深刻改变创新方法论。通过对大量数据的学习与推理,大模型能够为创新者提供全方位的支持。特别是在创意生成、方案设计和快速验证等环节,大模型的应用帮助创新者从新的视角来审视问题,优化解决方案,并大幅缩短决策周期。
大模型创新方法论
大模型驱动的创新方法论主要包括以下几个步骤:
- 问题识别:AI通过对市场需求、技术趋势和用户反馈的分析,帮助创业者识别创新领域的关键问题。
- 知识积累:大模型能够通过学习大量的文献、专利、技术文章等,积累领域知识,提供深入的背景知识支持。
- 方案生成:基于积累的知识,大模型可以自动生成多个创新方案,帮助创业者进行创意发掘。
- 快速验证:通过AI仿真与测试,创业者能够快速验证不同方案的可行性,减少市场试错成本。
- 持续优化:创新过程不是一蹴而就的,AI可以帮助创业者在不断迭代中进行持续优化,提升产品的市场竞争力。
这套创新方法论通过大模型的分析和优化能力,使得创新过程更加数据驱动、结果导向,降低了不确定性,提升了创新的成功率。
3. 案例分析
为了更直观地展示AI赋能创新创业的实际效果,本部分将深入分析若干典型的创新创业案例。这些案例涉及不同行业和应用场景,涵盖了从产品设计、开发到市场营销的各个环节,体现了AI如何推动创业者在技术、商业模式和资源整合等方面实现创新。
3.1 案例一:智能制造创业
某制造业创业团队利用大语言模型(LLM)和机器学习技术,成功实现了从产品设计到生产优化的全流程智能化。这一案例表明,AI不仅可以提升企业的研发效率,还能优化生产过程,降低成本,提高产品质量。
-
设计阶段: 在传统制造业中,产品设计往往依赖工程师的经验和灵感,而AI的引入使得设计变得更加智能化。在该团队的案例中,他们使用了GPT-4来进行产品概念设计,通过自然语言提示生成创意方案,快速实现概念的迭代。例如,团队输入关于环保材料的提示,AI自动生成了多种可能的材料选择及其组合方案,这大大缩短了设计周期。
-
开发阶段: 进入产品开发阶段,传统的编程工作依赖开发人员手动编写大量代码,而AI可以在此阶段加速开发过程。该团队使用GitHub Copilot等AI辅助编程工具,自动化生成了大量的代码段,并在此基础上进行调整和优化。AI的介入使得开发周期缩短了60%,同时大大提高了代码的准确性和可维护性。
-
生产阶段: 在生产环节,传统的制造业往往需要人工干预来调整生产参数,而该团队通过机器学习优化生产流程。通过对历史生产数据的分析,AI能够实时调整生产参数,优化生产效率。例如,在生产过程中,AI系统通过实时监控产品的质量,自动调整机器的参数,减少了不良品率,并提升了整体生产效率。
-
营销阶段: 该团队还利用AI生成营销文案,通过自动化工具定向推送广告信息,实现精准营销。AI根据消费者的行为数据、购买历史以及市场趋势生成定制化的营销策略,大大提高了广告的转化率,降低了营销成本。
实施效果:
-
产品开发周期缩短
-
生产效率提升
-
营销成本降低
-
客户满意度提升
该案例充分展示了AI技术在制造业中的应用潜力,不仅在技术研发方面带来效率提升,还在生产优化、市场推广等方面发挥了重要作用,帮助企业提高了整体的竞争力。
3.2 案例二:AI教育创新
公众号《用数说》基于大语言模型(LLM)开发了个性化学习助手,致力于为学生提供量身定制的学习方案。这一案例展示了AI如何改变教育行业的传统教学方式,提高学习效率,减轻教师的工作负担。
AI教育创新模式
-
个性化学习路径: 在传统的教育模式中,教师通常需要针对每个学生的差异制定个性化的教学计划,这一过程既繁琐又耗时。而通过AI学习助手,系统能够自动为每个学生生成个性化的学习路径。根据学生的学习进度、理解能力和兴趣,AI生成针对性的学习资源,并在每次互动后根据学生的反馈实时调整学习计划。
-
智能反馈与优化: 学生通过与AI助手进行互动,提出问题并获得即时反馈。AI助手不仅能够提供准确的答案,还能根据学生的学习情况,生成个性化的学习建议,帮助学生理解难点和薄弱环节。AI还会根据学生的表现生成学习报告,提供给教师,以便教师调整教学策略和内容。
-
教师工作负担减轻: 教师在教学过程中面临着繁重的备课、批改作业等工作,而AI助手能够有效减轻教师的工作负担。通过自动化生成学生的学习报告,AI帮助教师快速了解学生的学习进度和问题,节省了大量的时间和精力。
实施效果:
-
学习效率提升
-
教师工作负担减少
-
学生满意度提高
-
用户留存率提高
我们的公众号《用数说》的案例表明,AI能够有效提高教育质量,通过个性化学习方案和智能反馈机制,帮助学生更加高效地学习,同时也让教师能够更专注于教学内容的创新和学生的情感关怀。
3.3 案例三:金融科技创新
某金融科技创业团队利用大语言模型(LLM)开发了智能投顾系统,为用户提供个性化的投资建议。该系统结合了深度学习和自然语言处理技术,能够根据用户的投资偏好、风险承受能力以及市场动态,自动化生成投资组合建议。
-
市场分析与预测: 传统的投资分析通常依赖于专家团队的研究和市场数据的人工解读,而AI技术通过对大量历史数据的学习,能够快速分析市场趋势并给出预测。该团队利用GPT-4分析了大量的财务报表、新闻资讯和市场数据,生成投资决策的建议。这一过程不仅提高了分析的准确性,还大幅提高了分析速度,帮助用户做出及时的投资决策。
-
风险预警系统: 利用机器学习技术,团队还开发了智能的风险预警系统。该系统通过实时监控市场动态,自动检测潜在的风险因素,并在风险临界点之前提前预警。这一系统帮助投资者规避了潜在的市场波动,降低了投资风险。
-
多模型集成决策: 为了提高投资建议的准确性,团队采用了多模型集成的方法,将多种AI模型进行集成,结合深度学习、自然语言处理和回归分析等技术,综合考虑多个因素,生成投资决策建议。
-
智能客户服务: 在客户服务方面,团队还开发了24/7的智能客服系统,能够根据客户的投资需求提供实时解答。AI客服能够快速响应客户的询问,提供定制化的投资建议,提升了客户的服务体验。
实施效果:
-
市场分析准确率提升
-
风险预警提前预警率提高
-
投资建议收益率提升
-
客户服务响应速度提升
该案例充分展示了AI技术在金融领域中的应用潜力,尤其是在市场分析、风险控制和客户服务等方面,AI的引入不仅提高了服务的效率和质量,还增强了投资者的决策能力,提升了企业的竞争力。
4. AI赋能创新创业的方法论
4.1 创新方法体系
AI赋能创新创业的方法论不仅仅局限于技术创新,还包括商业模式创新和组织创新。创新方法体系的建立可以帮助创业者更全面地理解AI如何赋能创新创业,以及如何通过技术、商业模式和组织结构的创新,提升企业的竞争力和市场适应性。
-
技术创新:技术创新是AI赋能创新创业的核心所在。通过大语言模型、深度学习等技术的应用,创业者可以实现产品、服务和业务流程的创新。例如,使用AI生成创意方案、通过算法优化生产流程等,都会推动技术创新的实施。
-
商业模式创新:AI为商业模式的创新提供了新机遇。例如,AI可以帮助企业实现平台化运营、双边市场模式,打造精准的个性化服务,实现收入模式的多元化。通过AI,企业能够精准识别用户需求,调整产品定价,增强市场竞争力。
-
组织创新:组织创新是推动AI技术应用的关键因素之一。通过AI,企业可以在组织结构上进行扁平化和网络化调整,使企业决策过程更加高效、灵活。例如,通过数据驱动的决策支持系统,管理者能够实时了解市场和运营数据,从而作出更加科学的决策。
创新方法体系
4.2 实施路径
AI赋能创新创业的实施路径包括前期准备、实施阶段和扩展阶段,创业者需要根据企业的具体情况,在每个阶段采取相应的措施,以确保创新的顺利推进。
-
前期准备阶段:在这个阶段,创业者需要对AI技术的成熟度进行评估,明确所需的技术资源,梳理可用的外部资源,并组建跨学科的团队。团队成员应包括AI技术专家、行业专家、产品经理等,确保技术的可行性和市场需求的匹配。
-
实施阶段:在实施阶段,创业者需要快速迭代,进行原型开发和数据积累,同时对AI模型进行优化。通过快速验证和市场反馈,确保产品和服务能够及时调整,满足市场需求。
-
扩展阶段:在扩展阶段,创业者需要寻找新的应用场景,构建合作伙伴网络,推动产品的规模化落地。扩展阶段的成功与否直接关系到企业是否能够在激烈的市场竞争中立于不败之地。
4.3 关键成功因素
实现AI赋能创新创业的成功离不开以下关键因素:
- 技术创新:技术的持续创新是驱动AI赋能创新的核心动力。创业者需要不断投入研发,保持技术领先优势。
- 数据质量:AI的性能很大程度上取决于数据的质量。建立健全的数据治理体系,确保数据的准确性和完整性,是实现AI赋能的基础。
- 人才储备:拥有复合型人才,尤其是“AI+领域”的专家,是AI赋能创新成功的重要保障。企业需要注重人才的培养和引进,提升团队的创新能力。
- 融资能力:AI赋能创新通常需要较大的资金投入,企业需要拥有多元化的融资渠道,以确保资金的稳定供应。
- 生态建设:构建开放的合作伙伴生态系统,是推动AI赋能创新的重要策略。通过与其他企业、科研机构等建立合作关系,企业可以获取更多的技术支持和市场资源。
关键成功因素
通过上述路径和关键因素的实施,创业者可以实现AI赋能创新创业的成功,推动企业在市场竞争中脱颖而出。
5. 未来展望与建议
5.1 发展趋势
随着人工智能技术的不断进步,尤其是大语言模型(LLM)、深度学习、强化学习等领域的飞速发展,AI赋能创新创业的潜力还远未完全释放。未来,AI将继续深刻改变各行各业的生态和运作模式,推动技术进步、商业模式演化和组织结构创新,带来更加广阔的机会与挑战。
AI创新发展趋势
在此背景下,AI赋能创新创业的未来发展趋势可以从以下几个方面进行展望:
-
AI技术的不断成熟与多元化应用:目前,AI技术已经渗透到各个行业的各个环节,从产品设计到营销推广,AI的应用正在不断深化。未来,随着算法的优化与技术的成熟,AI将在更多的行业和领域实现更为广泛和深度的应用。例如,医疗、教育、金融、制造等领域的AI应用将不断创新,提供更加精准和个性化的服务。
-
跨界融合与多模态AI的崛起:随着大语言模型和多模态AI(例如同时处理文本、图像和音频数据的模型)的发展,AI将实现跨领域和跨行业的融合,推动创新创业的跨界协作和多元发展。跨界融合不仅限于技术领域,还包括产业和商业模式的跨界整合。例如,AI与物联网、5G、区块链等技术的结合,将催生新的商业机会和创新方向。
-
人工智能伦理与法规的完善:随着AI应用的广泛普及,人工智能的伦理问题和法规问题将成为未来发展的一个重要课题。创业者和技术开发者需要关注AI技术的伦理合规性,例如如何确保数据隐私、如何避免算法歧视、如何合理使用人工智能等。未来,全球范围内将出台更加明确的法律法规,以规范AI技术的发展和应用。
-
自动化与智能化引领未来生产模式:AI将带来生产模式的革命,推动“智能制造”向“全自动化生产”转型。在这一过程中,大量的人工操作将被自动化和智能化取代,企业将通过AI和机器人技术实现生产过程的高度自动化,从而降低生产成本、提高生产效率和产品质量。
-
虚拟现实与增强现实的深度结合:随着计算能力的提升,虚拟现实(VR)与增强现实(AR)技术将越来越多地与AI深度结合,推动创新创业的新场景的产生。例如,在医疗、教育和娱乐领域,AI与AR/VR技术的结合能够创造出全新的用户体验和商业模式。
5.2 建议与对策
对于创业者而言,AI赋能创新创业的未来发展趋势和挑战,要求他们在实践中采取有效的对策和战略。以下是一些建议:
- 坚持技术创新,不断追求技术突破:AI技术的不断创新是推动创业成功的核心动力。创业者应当持续关注AI技术的最新发展,并根据市场需求快速调整自己的技术研发方向。通过引入和利用先进的AI技术,创业者能够在市场中取得领先地位。
- 行动建议:持续加大研发投入,建立创新实验室,提升团队的技术能力。
- 技术选择:在AI技术的选择上,创业者应根据自己的行业特点和目标应用场景,选择最适合的技术路径。例如,文本生成可以优先考虑自然语言处理技术,产品设计可以选择AI辅助设计工具,数据分析则可以考虑深度学习和机器学习算法。
- 加强跨界合作与生态构建:随着AI技术的深入发展,创业者单打独斗的时代已经过去。未来,跨界合作将成为AI赋能创新创业的重要趋势。创业者应积极与其他行业的企业、科研机构以及政府部门合作,形成多元化的生态系统,共同推动AI技术的应用和推广。
- 行动建议:积极参与行业联盟、技术合作平台的建设,联合高校和科研机构进行技术攻关。
- 合作领域:通过与其他行业的深度合作,创业者可以在智能制造、金融科技、健康医疗、教育科技等多个领域找到合作机会,实现共赢。
- 培养复合型人才,搭建高效团队:AI赋能创新创业需要多学科、多领域的知识融合和团队合作。创业者应重视团队的建设,培养和引进具有AI技术背景的复合型人才,同时,跨学科的团队能够为创新提供更加丰富的视角和解决方案。
- 行动建议:在招聘中注重AI领域人才的引进,尤其是跨学科的“AI+”复合型人才。同时,关注团队成员的技能提升,鼓励员工进行持续学习和创新。
- 注重数据质量和数据治理:数据是AI的“粮食”,数据质量和数据治理将直接影响AI技术的应用效果和决策能力。创业者应建立健全的数据治理体系,确保数据的完整性、准确性和隐私保护。
- 行动建议:建立数据治理框架,加强数据采集、存储、处理和分析的规范化管理。
- 数据策略:企业应制定严格的数据管理和隐私保护政策,确保合规性,避免数据泄露和滥用。
- 注重用户体验和市场需求的快速响应:AI赋能创新创业的最终目的是满足用户需求,提高市场竞争力。创业者应时刻关注市场的变化和用户的反馈,快速响应,调整产品和服务的方向,以保持竞争优势。
- 行动建议:通过数据分析工具和AI系统的支持,快速获得用户反馈,及时对产品和服务进行优化。
- 用户导向:应从用户的需求出发,设计出符合市场需求和用户偏好的产品。
- 关注伦理合规与法律风险:随着AI技术的广泛应用,人工智能的伦理和法律问题将变得愈加重要。创业者需要关注相关法律法规,确保企业的AI应用合规,避免潜在的法律风险。
- 行动建议:了解并遵守所在国家和地区的AI相关法律法规,特别是关于数据隐私和算法透明度的规定。
- 法律合规:建立企业内部的法律合规团队,确保所有AI应用和项目都能够符合伦理和法律标准。
- 利用AI提高资源利用效率:AI不仅能够推动技术和产品创新,还可以在资源整合和利用上提供帮助。创业者应利用AI优化资源配置,提高运营效率,降低成本,从而提升企业的核心竞争力。
- 行动建议:通过AI技术优化供应链管理、库存管理和生产调度等环节,提升资源的利用效率。
- 智能决策:利用AI技术支持决策,减少人工决策的错误,确保企业在面对复杂的市场环境时能够做出快速而准确的判断。
5.3 AI赋能创业的挑战与对策
尽管AI技术为创业者带来了前所未有的机遇,但创业者在实践中仍面临一系列挑战,以下是一些常见的挑战和应对策略:
- 技术难度与技术迭代:AI技术的快速发展和不断迭代,使得创业者面临技术不断更新和升级的压力。为了适应这一变化,创业者需要不断跟进最新的技术成果,并确保自身技术的持续创新。
- 应对策略:保持与科研机构和技术平台的合作,定期进行技术培训,提升团队的技术能力和前瞻性。
- 资金和资源的限制:AI技术的研发和应用通常需要较高的资金投入,对于创业企业来说,融资难度较大。
- 应对策略:创业者可以通过天使投资、风险资本等渠道进行融资,也可以考虑合作伙伴共享资源,降低初期的资金压力。
- 市场的不确定性:AI技术的应用不仅涉及技术层面的挑战,还包括市场需求的不确定性,创业者需要在不断变化的市场环境中找到突破口。
- 应对策略:创业者可以通过快速迭代、精益创业的方法,持续调整产品和商业模式,快速响应市场需求变化。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓