TONGDA
在当今这个快速变化的工业时代,制造业正站在一个新的历史起点。
随着国家对“人工智能+”战略的深入推进,制造业的数字化转型已成为推动产业升级、提升国际竞争力的关键力量。
在这个转型的浪潮中,大模型技术以其卓越的理解和生成能力,为制造业带来了革命性的变革机遇。
在大模型之前,AI在工业的应用有“一场景一训练一模型”的局限,而大模型的出现,其泛化能力不仅能有效提升AI在工业的应用场景,而且有望形成“基础模型+各类应用”的新范式。
那么,大模型在制造业的应用场景究竟有哪些?它们又是如何改变我们的制造方式的呢?接下来,让我们一起探索大模型在制造业的魅力所在,看看它们如何为制造业注入新的活力,引领我们走向更加智能、高效的制造未来。
01
工业文档智能问答
在工业领域,工程师、销售、客服等人员经常需要查阅大量的技术文档、操作手册和维护指南来解决工作中遇到的问题。传统的文档检索方式耗时且效率低下,而基于检索增强生成(RAG)技术方案的智能问答系统,能够极大地提高这一过程的效率和准确性。
1.即时技术问题解答
- 利用RAG技术,工程师可以通过自然语言直接向系统提问有关技术细节、故障诊断或操作步骤的问题。系统能够理解问题的上下文,并从大量的工业文档中检索相关信息,生成精确的答案,从而加快问题解决的速度。
2.维护与支持的智能化
- 对于日常的设备维护和故障排除工作,智能问答系统可以提供即时的指导和建议。系统不仅能够检索到相关的维护文档,还能够根据历史案例和解决方案生成操作步骤,帮助技术人员快速定位并解决问题。
3.客户服务与支持的增强
- 智能问答系统不仅服务于内部人员,还能作为客户服务的强大工具。客户可以通过系统查询产品的使用指南、维护建议和故障排除方法。此外,系统能够根据客户的反馈和查询历史,提供个性化的服务和支持,从而提升客户满意度和忠诚度。企业的客户服务团队也可以利用这一系统,更高效地处理客户咨询,快速解决问题,确保客户获得及时、准确的帮助。通过这种方式,智能问答系统成为了企业与客户之间沟通的重要桥梁,提升了整体的客户服务水平。
4.人力资源
- 在人力资源管理场景中,智能问答系统的应用可以极大地提升HR部门的工作效率,同时改善员工的工作体验。通过利用大数据和自然语言处理技术,系统能够实时响应员工关于福利政策、培训资源、考核标准等企业办公制度方面的查询,从而使人力资源管理更加高效和透明。
(RAG智能问答工作原理)
通答AI基于企业数据的智能问答系统是一个统一的知识来源,通过直观的搜索和聊天界面,使企业用户能够快速定位、检索和处理企业数据和见解,具备以下特征:
-
确定性响应:系统对特定输入会产生可预测和确定的输出,不会出现随机性或变化。
-
可追溯到基本事实:系统的输出可以追溯到真实的事实或数据来源,具有可追溯性和可验证性。
-
企业访问控制:涉及企业对于数据和资源访问的控制和管理,以确保安全和合规性。
-
无LLM导致的数据泄露:系统不会因为使用大型语言模型(LLM)而导致数据泄露,这样可以保护数据的安全。
-
无幻觉:系统输出不会出现虚假或不实的信息,保持真实和可信度。
-
LLM不可知:系统不依赖于大型语言模型的具体工作方式和内部结构。
客户案例:提升制造业安装与维护效率
客户背景
一家大型跨国制造集团,在全球31个工厂生产产品,该公司不仅拥有庞大的内部和第三方分销渠道,还提供安装和维护服务,由超过200名内部现场工程师和数千名第三方现场操作员共同执行。此外,一个独立的客户服务部门为内部和第三方支持团队提供远程协助,以完成安装和维护任务。
挑战
在采用通答 AI之前,现场团队经常难以访问公司数千种不同产品设备和服务信息。现场工程师在执行安装任务时,常因搜索冗长的设备手册中的特定安装指导而遭遇延误,而客户服务代理必须手动识别正确的设备型号并回答具体问题,以最有效地支持现场团队。
解决方案
该制造公司选择利用通答AI 实时问答系统简化信息获取,选择该平台是因其特定于领域的架构、企业级安全标准和快速部署能力。<