吴恩达 coursera AI 专项四第二课总结+作业答案

前言

吴恩达的课程堪称经典,有必要总结一下。
学以致用,以学促用,通过笔记总结,巩固学习成果,复习新学的概念。

目录

正文

案例学习

在这里插入图片描述在这里插入图片描述本周主要讲解lebet-5以及alexnet,vgg和resnet以及inception。
在这里插入图片描述LeNet-5的结构如下。
在这里插入图片描述Alexnet的结构如上。
在这里插入图片描述vgg16的结构如上。
在这里插入图片描述残差网络的基本单元,残差区块。
在这里插入图片描述残差网络的效果,训练误差顺着层级增加而减少。
在这里插入图片描述为什么一个11的卷积会起到效果?
1
1的卷积可以用来调整内容。
在这里插入图片描述使用1*1的卷积和192哥滤波器。
在这里插入图片描述感知器的激活特效。
在这里插入图片描述计算误差所导致的问题。
在这里插入图片描述使用 1 ∗ 1 1*1 11的卷积来传递参数。
在这里插入图片描述感知模块。
在这里插入图片描述感知神经网

本周结束。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值