三角剖分详解

本文详细介绍了三角剖分的概念,特别是Delaunay三角剖分的定义、特性以及其在算法中的应用。Delaunay三角剖分遵循空圆特性,保证了在三角形外接圆内没有其他点。Lawson算法是一种构造Delaunay三角网的方法,虽然在大规模点集处理时效率较低,但能保证网格满足空圆特性。
摘要由CSDN通过智能技术生成

三角剖分

三角剖分定义

定义:三角剖分:假设V是二维实数域上的有限点集,边e是由点集中的点作为端点构成的封闭线段, E为e的集合。那么该点集V的一个三角剖分T=(V,E)是一个平面图G,该平面图满足条件:

1.除了端点,平面图中的边不包含点集中的任何点。

2.没有相交边。 

3.平面图中所有的面都是三角面,且所有三角面的合集是散点集V的凸包。

Delaunay边:

   存在一条边e属于E,且经过该边的两个端点a,b有一个圆,园内(注意是圆内,圆上最多三点共圆) 不含点集V中任何其它的点,这样的边称为Delaunay边。

Delaunay三角剖分:

如果点集V的一个三角剖分T只包含Delaunay边,那么该三角剖分称为Delaunay三角剖分。


Delaunay三角剖分的准则:

1、空圆特性:Delaunay三角网是唯一的(任意四点不能共圆),在Delaunay三角形网中任一三角形的外接圆范围内不会有其它点存在。

2、最大化最小角特性:在散点集可能形成的三角剖分中,Delaunay三角剖分所形成的三角形的最小角最大。具体的说是指在两个相邻的三角形构成凸四边形的对角线,在相互交换后,六个内角的最小角不再增大。


Delaunay三角剖分的特性<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值