计算几何——三角剖分(Triangulation)

本文深入探讨了计算几何中的三角剖分问题,包括画廊问题的覆盖策略、Fisk's Proof的多边形着色理论以及简单多边形的三角剖分算法,特别是针对单调多边形的扫描线算法,详细阐述了如何通过三角剖分有效地覆盖和分解二维多边形。
摘要由CSDN通过智能技术生成

本节主要讲解了如何将二维多边形划分为多个不相交的三角形。

一、画廊问题 art gallery problem

        考虑如下场景,在一个尺寸为多边形的画廊中放置摄像头(哨兵),需要放几个才能完全覆盖该场景?可以看到下图至少需要两个哨兵。

        如下图,若多边形是凸多边形或星形多边形,那么只须在中间的核位置放一个即可,此情况为该问题的最小解(下界)

        若多边形不规则,那么最多n个点,即n多边形的每个顶点都设置一个哨兵,就可以将整个多边形覆盖,因此问题的最大解(上界)为n。

         实际上,对于n个顶点的不规则多边形而言,最多只须n/3个点即可覆盖,如下图红点所示:

因为场景不同导致的情况不同,在数学上有证明指出画廊问题是NP-Hard问题,就是非确定性多项式困难问题


二、Fisk's Proof

一些概念:

  • 扇形:一个有核点的星形多边形。每个扇形可以由一个点覆盖整个扇形。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值