数值积分与数值微分
--------本章节总体逻辑:
- 实际问题中,往往仅知道函数在一些离散点上的值,而无法得到具体的解析表达式。或者有函数的解析式,却难以求得其原函数。我们就需要利用函数在这些离散点上的值计算函数定积分或导数的近似值。
- 类比插值中的n次插值的方法,对于n+1个离散点,用插值型数值求积公式进行积分的计算。
- 为了简化计算,通常取求积节点为等距节点,由此产生的插值型求积公式称为Newton-Cotes求积公式。
- 根据节点个数的不同,Newton-Cotes求积公式又分为梯形公式、Simpson公式(抛物线公式)、Cotes公式。
- 由于高次插值型求积公式数值不稳定,提出了复化求积公式(类比分段插值)
- 这样,根据每一段节点数量的不同,复化求积公式又分为复化梯形公式、复化Simpson公式、复化Cotes公式。
- 但是复化求积公式,需要在求积分前,计算给定合适的步长。为了克服这个困难,提出了Romberg求积公式与T数表的求解方式。
- Romberg求积公式的求解精度虽然基本准确,但是对于n+1个节点来说,一般只具有n次代数精度。为了提高代数精度,提出了Gauss型求积公式的方法。
--------以下为各部分具体知识点:
一、数值积分概述
1. 相关概念:求积节点、求积系数、误差或余项、代数精度
2. 一般形式
∫
a
b
f
(
x
)
d
x
≈
∑
k
=
0
n
A
k
f
(
x
k
)
\int_{a}^{b} f(x)\,dx \approx \sum_{k=0}^{n} A_kf(x_k)
∫abf(x)dx≈k=0∑nAkf(xk)
3. 插值型求积公式
(1)公式
A
k
=
∫
a
b
l
k
(
x
)
d
x
A_k=\int_{a}^{b}l_k(x)dx
Ak=∫ablk(x)dx
(2)定理:求积公式至少具有
n
n
n次代数精度的充分条件是求积公式的一般形式是插值型求积公式。
(3)余项
R
[
f
]
=
1
(
n
+
1
)
!
∫
a
b
ρ
(
x
)
f
(
n
+
1
)
(
ξ
x
)
ω
n
+
1
(
x
)
d
x
=
∫
a
b
ρ
(
x
)
f
[
x
0
,
x
1
,
⋅
⋅
⋅
,
x
n
,
x
]
ω
n
+
1
(
x
)
d
x
R[f]=\frac{1}{(n+1)!} \int_{a}^{b}\rho{(x)}f^{(n+1)}(\xi_x)\omega_{n+1}(x)\,dx=\int_{a}^{b}\rho(x)f[x_0,x_1,···,x_n,x]\omega_{n+1}(x)\,dx
R[f]=(n+1)!1∫abρ(x)f(n+1)(ξx)ωn+1(x)dx=∫abρ(x)f[x0,x1,⋅⋅⋅,xn,x]ωn+1(x)dx
4. Newton-Cotes求积公式
(1)定义:等距节点的插值型求积公式 Newton-Cotes求积公式
(2)公式
∫
a
b
f
(
x
)
d
x
≈
(
b
−
a
)
∑
k
=
0
n
C
k
(
n
)
f
(
a
+
k
h
)
\int_a^bf(x)\,dx \approx (b-a)\sum_{k=0}^{n}C_k^{(n)}f(a+kh)
∫abf(x)dx≈(b−a)k=0∑nCk(n)f(a+kh)
C
k
(
n
)
=
1
b
−
a
A
k
=
(
−
1
)
n
−
k
n
k
!
(
n
−
k
)
!
∫
0
n
∏
i
=
0
,
i
≠
k
n
(
t
−
i
)
d
t
,
k
=
0
,
1
,
2
,
⋅
⋅
⋅
,
n
C_k^{(n)}=\frac{1}{b-a}A_k=\frac{(-1)^{n-k}}{nk!(n-k)!}\int_0^n \prod_{i=0,i \ne k}^n(t-i)\, dt, k = 0,1,2,···,n
Ck(n)=b−a1Ak=nk!(n−k)!(−1)n−k∫0ni=0,i=k∏n(t−i)dt,k=0,1,2,⋅⋅⋅,n
(3)定理:当
n
n
n为偶数时,Newton-Cotes求积公式至少具有
n
+
1
n+1
n+1次代数精度
(4)误差
R
[
f
]
=
∫
a
b
ω
n
+
1
(
x
)
d
x
=
∫
a
b
∏
i
=
0
n
(
x
−
x
i
)
d
x
R[f]=\int_a^b \omega_{n+1}(x)\,dx=\int_a^b \prod_{i=0}^n(x-x_i) \, dx
R[f]=∫abωn+1(x)dx=∫abi=0∏n(x−xi)dx
(5)特例
- 梯形公式
∫ a b f ( x ) d x ≈ ( b − a ) 2 [ f ( a ) + f ( b ) ] \int_a^bf(x)\,dx \approx \frac{(b-a)}{2}[f(a)+f(b)] ∫abf(x)dx≈2(b−a)[f(a)+f(b)]
∣ R [ f ] ∣ ≤ M 2 12 ( b − a ) 3 |R[f]| \leq \frac{M_2}{12}(b-a)^3 ∣R[f]∣≤12M2(b−a)3 - Simpson公式(抛物线公式)
∫ a b f ( x ) d x ≈ ( b − a ) 6 [ f ( a ) + 4 f ( a + b 2 ) + f ( b ) ] \int_a^bf(x)\,dx \approx \frac{(b-a)}{6}[f(a)+4f(\frac{a+b}{2})+f(b)] ∫abf(x)dx≈6(b−a)[f(a)+4f(2a+b)+f(b)]
∣ R [ f ] ∣ ≤ M 4 2880 ( b − a ) 5 |R[f]| \leq \frac{M_4}{2880}(b-a)^5 ∣R[f]∣≤2880M4(b−a)5 - Cotes公式
∫ a b f ( x ) d x ≈ ( b − a ) 90 [ 7 f ( x 0 ) + 32 f ( x 1 ) + 12 f ( x 2 ) + 32 f ( x 3 ) + 7 f ( x 4 ) ] \int_a^bf(x)\,dx \approx \frac{(b-a)}{90}[7f(x_0)+32f(x_1)+12f(x_2)+32f(x_3)+7f(x_4)] ∫abf(x)dx≈90(b−a)[7f(x0)+32f(x1)+12f(x2)+32f(x3)+7f(x4)]
∣ R [ f ] ∣ ≤ M 6 1935360 ( b − a ) 7 |R[f]| \leq \frac{M_6}{1935360}(b-a)^7 ∣R[f]∣≤1935360M6(b−a)7
(6)结论
A 0 + A 1 + ⋅ ⋅ ⋅ + A n = b − a A_0+A_1+···+A_n=b-a A0+A1+⋅⋅⋅+An=b−a
C 0 ( n ) + C 1 ( n ) + ⋅ ⋅ ⋅ + C n ( n ) = 1 C_0^{(n)}+C_1^{(n)}+···+C_n^{(n)}=1 C0(n)+C1(n)+⋅⋅⋅+Cn(n)=1
二、复化求积公式
1. 复化梯形公式
- 公式
∫ a b f ( x ) d x ≈ h 2 [ f ( a ) + 2 ∑ k = 1 n − 1 f ( x k ) + f ( b ) ] \int_a^bf(x)\,dx \approx \frac{h}{2}[f(a)+2\sum_{k=1}^{n-1}f(x_k)+f(b)] ∫abf(x)dx≈2h[f(a)+2k=1∑n−1f(xk)+f(b)] - 误差估计
∣ I − T n ∣ ≤ ( b − a ) 3 12 n 2 M 2 , n > ( b − a ) 3 M 2 12 ε |I-T_n| \le \frac{(b-a)^3}{12n^2}M_2, \, n > \sqrt{\frac{(b-a)^3M_2}{12\varepsilon}} ∣I−Tn∣≤12n2(b−a)3M2,n>12ε(b−a)3M2
2. 复化Simpson公式 - 公式
∫ a b f ( x ) d x ≈ h 6 [ f ( a ) + 4 ∑ k = 1 n f ( x k − 1 2 ) + 2 ∑ k = 1 n − 1 f ( x k ) + f ( b ) ] \int_a^bf(x)\,dx \approx \frac{h}{6}[f(a)+4\sum_{k=1}^{n}f(x_{k-\frac{1}{2}})+2\sum_{k=1}^{n-1}f(x_{k})+f(b)] ∫abf(x)dx≈6h[f(a)+4k=1∑nf(xk−21)+2k=1∑n−1f(xk)+f(b)] - 误差估计
∣ I − S n ∣ ≤ ( b − a ) 5 2880 n 4 M 4 , n > ( b − a ) 5 M 4 2880 ε 4 |I-S_n| \le \frac{(b-a)^5}{2880n^4}M_4, \, n > \sqrt[4]{\frac{(b-a)^5M_4}{2880\varepsilon}} ∣I−Sn∣≤2880n4(b−a)5M4,n>42880ε(b−a)5M4
3. 复化Cotes公式 - 公式
∫ a b f ( x ) d x ≈ h 90 [ 7 f ( a ) + 32 ∑ k = 1 n ( f ( x k − 3 4 ) + f ( x k − 1 4 ) ) + 12 ∑ k = 1 n f ( x k − 1 2 ) + 14 ∑ k = 1 n − 1 f ( x k ) + 7 f ( b ) ] \int_a^bf(x)\,dx \approx \frac{h}{90}[7f(a)+32\sum_{k=1}^{n}(f(x_{k-\frac{3}{4}})+f(x_{k-\frac{1}{4}}))+12\sum_{k=1}^{n}f(x_{k-\frac{1}{2}}) + 14\sum_{k=1}^{n-1}f(x_{k}) + 7f(b)] ∫abf(x)dx≈90h[7f(a)+32k=1∑n(f(xk−43)+f(xk−41))+12k=1∑nf(xk−21)+14k=1∑n−1f(xk)+7f(b)]
4. 结论 - 复化梯形求积公式的精度较低
- 复化Simpson公式比复化梯形公式精度高
三、Romberg求积公式
- 定义:克服上述需要选取步长的问题
- 区间逐次分半的梯形公式(复化梯形公式)
f ( n ) = { T 1 = b − a 2 [ f ( a ) + f ( b ) ] T 2 n = T n 2 + h 2 ∑ k = 0 n − 1 f ( x k + 1 2 ) , n = 1 , 2 , 4 , 8 , ⋅ ⋅ ⋅ f(n) = \begin{cases} T_1 = \frac{b-a}{2}[f(a)+f(b)] \\ T_{2n} =\frac{T_n}{2} + \frac{h}{2} \sum_{k=0}^{n-1}f(x_{k+\frac{1}{2}}), n = 1, 2, 4, 8,··· \end{cases} f(n)={T1=2b−a[f(a)+f(b)]T2n=2Tn+2h∑k=0n−1f(xk+21),n=1,2,4,8,⋅⋅⋅ - Romberg积分公式
- 复化Simpson公式
S n = 4 T 2 n − T n 4 − 1 S_n = \frac{4T_{2n} - T_n}{4 - 1} Sn=4−14T2n−Tn - 复化Cotes公式
C n = 16 S 2 n − S n 16 − 1 C_n = \frac{16S_{2n} - S_n}{16 - 1} Cn=16−116S2n−Sn - Romberg积分公式
R n = 64 C 2 n − C n 64 − 1 R_n = \frac{64C_{2n} - C_n}{64 - 1} Rn=64−164C2n−Cn
四、Gauss型求积公式的一般理论
- 定义:如果求积公式具有 2 n − 1 2n-1 2n−1次代数精度,则称对应节点 x 1 , x 2 , ⋅ ⋅ ⋅ , x n x_1, x_2, ···, x_n x1,x2,⋅⋅⋅,xn为 G a u s s Gauss Gauss点,次数公式称为 G a u s s Gauss Gauss型求积公式
- 定理:区间 [ a , b ] [a,b] [a,b]上权函数为 ρ ( x ) \rho(x) ρ(x)的具有 n n n个节点的求积公式代数精度不超过 2 n − 1 2n-1 2n−1
- 计算步骤
- 构造正交多项式
- 求出 p n ( x ) p_n(x) pn(x)的 n n n个零点,即为 G a u s s Gauss Gauss点
- 计算求积系数
A i = ∫ a b ρ ( x ) l i ( x ) d x , i = 1 , 2 , ⋅ ⋅ ⋅ , n A_i = \int_a^b \rho(x)l_i(x)\, dx, i = 1,2,···,n Ai=∫abρ(x)li(x)dx,i=1,2,⋅⋅⋅,n
- 误差
R [ f ] = ∫ a b f ( x ) ρ ( x ) d x − ∑ i = 1 n A i f ( x i ) = f ( 2 n ) ( η ) ( 2 n ) ! ∫ a b ρ ( x ) ω n 2 ( x ) d x R[f]=\int_a^b f(x) \rho(x) dx - \sum_{i=1}^n A_i f(x_i) = \frac{f^{(2n)}(\eta)}{(2n)!}\int_a^b \rho(x) \omega_n^2(x) \, dx R[f]=∫abf(x)ρ(x)dx−i=1∑nAif(xi)=(2n)!f(2n)(η)∫abρ(x)ωn2(x)dx
五、常考题型及解题思路
- 相关求和性质
- 不同求积公式的应用
- Cotes系数表
- T数表
- 复化求积公式根据精度估计步长