1 基本定义
高斯加权移动平均滤波算法是一种基于加权平均的滤波方法,它可以有效地去除高斯噪声,同时保留信号的主要特征。该算法的主要思想是通过对信号进行加权平均来消除噪声,其中权值是根据高斯分布计算得到的,越接近中心点的权值越大,越远离中心点的权值越小。这样可以使得噪声的影响减小,同时保留信号的主要特征。 具体来说,高斯加权移动平均滤波算法的步骤如下:
-
定义一个滤波窗口,包括当前样本点和其周围的若干个点。
-
对窗口内的每个点计算其权值,根据高斯分布计算得到,距离当前样本点越远的点权值越小。
-
对窗口内的每个点的数值进行加权平均,得到当前样本点的滤波结果。
-
将滤波窗口向前移动一个位置,重复上述步骤,直到所有样本点都被处理完毕。高斯加权移动平均滤波算法的优点是可以有效地去除高斯噪声,同时保留信号的主要特征;缺点是需要选择合适的窗口大小和高斯分布参数,否则可能会影响滤波的效果。
谱相减算法呈现频谱:谱相减算法是一种音频降噪方法,通过将原始频谱与估计的噪声频谱进行相减,得到清晰的音频信号。该算法通常在频域进行操作,对频谱进行减法运算,并对结果进行逆变换以获得时间域的清晰信号。
2 定义和出图效果
附出图效果如下:
附视频教程操作:
【MATLAB】语音信号识别与处理:高斯加权移动平均滤波算法去噪及谱相减算法呈现频谱
代码见附件及视频~