减速带数据集950张

减速带是安装在公路上使经过的车辆减速的交通设施,形状一般为条状,也有点状的,材质主要是橡胶,也有的是金属的,一般以黄色黑色相间以引起视觉注意,使路面稍微拱起以达到车辆减速目的。

今天要介绍的数据集则是减速带数据集:

数据集名称:减速带数据集

数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml)
图片数量(jpg文件个数):以文件包含图片数量为准(在950张上下)
标注数量(xml文件个数):以文件包含标注数量为准(在950张上下)

使用标注工具:labelImg

标注规则:对类别进行画矩形框

如下为标注图片案列:(有需要的可以联系,有偿提供)

### 减速带数据集的相关信息 在计算机视觉领域,针对特定对象(如减速带)的数据集通常较为稀少,因为大多数公开数据集专注于更常见的物体类别,例如车辆、行人或交通标志。然而,可以通过以下几种方式获取与减速带相关的数据: #### 1. 自定义标注现有道路场景数据集 许多现有的自动驾驶相关数据集包含了丰富的道路场景信息,尽管这些数据集中可能未明确标注减速带这一类别的标签,但仍可通过人工筛选和重新标注的方式提取减速带样本。例如,Kitti 数据集[^5]提供了大量的驾驶场景图像以及激光雷达点云数据,可用于研究道路上的各种障碍物。 #### 2. 使用合成数据增强技术 如果无法找到现成的减速带数据集,可以考虑通过生成对抗网络(GANs)或其他图像合成方法创建虚拟减速带实例。这种方法能够显著增加训练样本数量,并提高模型对真实世界减速带的泛化能力[^6]。 #### 3. 开发专用采集工具 为了构建高质量的减速带数据集,可设计专门的数据收集方案,比如安装车载摄像头记录实际行驶过程中遇到的不同类型的减速带情况。随后运用半自动化流程完成图片裁剪及分类工作。 以下是实现上述思路的一个简单Python脚本例子,用于演示如何从文件夹读取图片并保存带有新标签的新副本: ```python import os from shutil import copyfile source_folder = 'path/to/source/images' destination_folder = 'path/to/destination/labeled_images' if not os.path.exists(destination_folder): os.makedirs(destination_folder) for filename in os.listdir(source_folder): if filename.endswith(".jpg") or filename.endswith(".png"): src_file_path = os.path.join(source_folder, filename) dst_file_path = os.path.join(destination_folder, f"speed_bump_{filename}") copyfile(src_file_path, dst_file_path) ``` --- ###
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不会仰游的河马君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值