tensorflow tf.concat操作

在某个试验中,设置了步长为2,3的两个卷积网络,在得到最终结果的时候需要对这两个网络的结果进行拼接,就需要tf.concat函数了。
官方例子:

t1 = [[1, 2, 3], [4, 5, 6]]
t2 = [[7, 8, 9], [10, 11, 12]]1)tf.concat([t1, t2], 0) ==> [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]2)tf.concat([t1, t2], 1) ==> [[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]]

如果按照正常的python数组来理解,那么t1和t2的维度数为2*3,
(1)拼接得到的维度数为4*3, 则可以认为(2+2)*3。注意concat的第二个参数。
(2)拼接得到的维度数为2*6, 则可以认为2*(3+3)。注意concat的第二个参数。
应该大概明白tf.concat输入和输出了。

TensorFlow 中的 `tf.stack` 和 `tf.concat` 都可以用于将多个张量拼接成一个张量,但它们的实现方式略有不同,具体如下: - `tf.concat`: 沿着一个指定的维度将多个张量拼接起来。例如,将两个形状为 `(3, 4)` 的张量沿着第一个维度拼接起来,得到一个形状为 `(6, 4)` 的张量。`tf.concat` 的实现方式是将多个张量在指定维度上直接拼接,因此要求各个输入张量在指定维度上大小相同。 - `tf.stack`: 沿着一个新的维度将多个张量堆叠起来。例如,将两个形状为 `(3, 4)` 的张量在第三个维度上堆叠起来,得到一个形状为 `(3, 4, 2)` 的张量。`tf.stack` 的实现方式是创建一个新的维度,并在这个维度上将各个输入张量堆叠起来,因此各个输入张量的大小可以不同,但在其它维度上的大小必须相同。 下面是具体的使用示例: ```python import tensorflow as tf # 定义两个张量 a = tf.constant([1, 2, 3]) b = tf.constant([4, 5, 6]) # 使用 tf.concat 将两个张量拼接成一个张量 c = tf.concat([a, b], axis=0) print(c) # 输出 [1 2 3 4 5 6] # 使用 tf.stack 将两个张量堆叠成一个张量 d = tf.stack([a, b], axis=1) print(d) # 输出 [[1 4] [2 5] [3 6]] ``` 在上面的例子中,我们首先定义了两个形状相同的张量 `a` 和 `b`。然后我们使用 `tf.concat` 将它们沿着第一个维度拼接起来,得到一个形状为 `(6,)` 的张量 `c`;接着使用 `tf.stack` 将它们在第二个维度上堆叠起来,得到一个形状为 `(3, 2)` 的张量 `d`。可以看到,`tf.concat` 和 `tf.stack` 的输出结果是不同的,这是因为它们的实现方式不同,使用时需要根据具体的需求选择合适的方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值