在某个试验中,设置了步长为2,3的两个卷积网络,在得到最终结果的时候需要对这两个网络的结果进行拼接,就需要tf.concat函数了。
官方例子:
t1 = [[1, 2, 3], [4, 5, 6]]
t2 = [[7, 8, 9], [10, 11, 12]]
(1)tf.concat([t1, t2], 0) ==> [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
(2)tf.concat([t1, t2], 1) ==> [[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]]
如果按照正常的python数组来理解,那么t1和t2的维度数为2*3,
(1)拼接得到的维度数为4*3, 则可以认为(2+2)*3。注意concat的第二个参数。
(2)拼接得到的维度数为2*6, 则可以认为2*(3+3)。注意concat的第二个参数。
应该大概明白tf.concat输入和输出了。