Tensorflow tf.concat

tf.concat(values, axis)

concat沿着某一维度链接tensor, 需要理解tensor 的维度 
t1 = [[[1, 1, 1],[2, 2, 2]],[[3, 3, 3],[4, 4, 4]]] 
t2 = [[[5, 5, 5],[6, 6, 6]],[[7, 7, 7],[8, 8, 8]]] 
第0维解释: 
t1和t2的0维是两个tensor最外层的两个中括号, 所以 tf.concat(0, [t1,t2]), 就是将t1 和 t2的最外层中括号去掉,元素合在一起在最外层再加一个中括号即可 
第1维解释: 
t1和t2的1维中第一个元素分别是:[[1, 1, 1],[2, 2, 2]] 和 [[5, 5, 5],[6, 6, 6]], 分别把外层中括号去掉合在一起,即为[1, 1, 1], [2, 2, 2], [5, 5, 5], [6, 6, 6] 然后外层在加一个中括号即可[[1, 1, 1], [2, 2, 2], [5, 5, 5], [6, 6, 6]] 
第2维解释: 
t1和t2的2维中的第一个元素分别为[1, 1, 1] 和 [5, 5, 5],两者合并后即为 [1, 1, 1, 5, 5, 5]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值